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Abstract:Service networks can be considered to be open innovation systems. 
It has led to research on the structure of these networks, concentrating on the 
static network topology and its effect on innovation. However, the research 
misses the changes of network positions over time. In this paper, we 
examine the changes of nodes’ positions in a software service network. The 
software service network has been built from empirical data. In this network, 
a node represents a Software-as-a-Service (SaaS) service and a link denotes 
a re-use of existing software services through a new service. Our results 
suggest that: first, software services undergo life cycles in their network 
positions; second, some software services achieve to hub position in their 
life cycle while others a core position; and third, an innovation trend appears 
at service category level not just by a single service. These results imply that 
innovation studies should not only consider static network positions and 
topologies but also trends of changing positions within the network. 

Keywords: Open Innovation, Network Centralities, Software-as-a-Service, 
Composite Services, Service Network, Innovation Trend. 
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1. Introduction 

The advancement of IT technologies enabled the provisioning of software services on 
the Internet. The demand for new business models that motivate users to innovate is 
behind the forces that allow developers to enhance and combine services at no charge. 
In this sense, the network of composite software services represents an open innovation 
environment (Chesbrough, 2003). Examples of open innovation systems are the 
database of academic journals, which allow researchers to contribute their research 
articles, read research articles of others, and refer to them (Wagner and Leydesdorff, 
2005), the community for open source developers, which stimulates the exchange of 
information on software development projects (Valverde and Solé, 2007), and the 
network of software services (SaaS) with open application programming interfaces 
(API), which allows accessing data and functions of services (Kim et al., 2011). 

As open innovation on service networks promotes the reuse of existing innovation 
resources, the innovation studies get interested in the structure of the entire innovation 
system (Chesbrough, 2011; Maglio et al., 2006). One of the main efforts of these 
studies is to apply network analysis to the network of nodes (i.e., innovation agents and 
resources). It follows the research on social networks (Freeman, 1979), statistical 
physics (Albert et al., 1999), and co-authorship networks (Newman, 2001; Wagner and 
Leydesdorff, 2005). The innovation research tested the relationship between a node’s 
social network position in a network structure and its innovation performance 
(Granovetter, 1973; Krackhardt and Stern, 1980). Similar analyses have also been 
performed for innovation communities (Grewal et al., 2006; Valverde and Solé, 2007) 
and innovation resources (Kim et al., 2011; Kim et al., 2010). However, prior research 
regards the network properties as static and their influence on innovation as invariant. 
Therefore, it misses the complex and dynamic behaviour of each node in evolving 
networks. 

Complementing prior research (Kim and Altmann, 2013; Kim et al., 2013), this 
paper explores the dynamic behaviour of an innovation system. We analyze the trends 
of positions of software services in a software service network, which evolves with 
maintaining its scale-free topology and openness. The software service network is 
defined by nodes, which correspond to software services, and links, which represent the 
joint use of the linked nodes for the creation of new software services. For the 
empirical analysis of the software service network, we use data that has been collected 
from a public Web site for listing software services (www.programmableweb.com). 
Software services with open APIs can be used for creating new, composite software 
services. From 7427 software services, we selected the 4 most frequently used software 
services in order to examine their position over time by applying two basic and popular 
measures (i.e., node degree centrality and betweenness centrality). This allows 
examining whether the innovation leader shifts from one service provider to another. 
Furthermore, we use the same measure for the 4 most frequently used software services 
of the social networking service category. It helps answering whether the shift of an 
innovation leader’s position is related to the innovation of a set of services (i.e., 
category). 

Our analysis exhibits three results related to innovation trends of software services 
within a stable network structure (Kim and Altmann, 2013). First, each software service 
shows a life cycle (i.e., its ascent, its maturity, and its decline of its network position 
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within the network) similar to the innovation adoption life cycle (Rogers, 2003). In 
detail, all software services that we monitored obtained a more central position of a 
software service network after entering the network. After being at this same level for a 
while, the service does not get adopted that much anymore. Actually, it gradually loses 
its central position. Second, the trend analysis shows that some software services 
achieve hub positions. A node in a hub position interconnects nodes of the entire 
network. Other software services achieve core positions within a cluster of software 
services (i.e., a set of nodes denser connected than other nodes (Scott, 1991)). The 
leading photo service (i.e., Flickr) gets dominated by losing its hub position to a social 
networking service (i.e., Twitter). The mapping service of Google (i.e., Google Maps) 
maintains its hub position. Third, the innovation adoption life cycle of a software 
service also depends on the innovation trend of its service category. The reason can be 
found in the fact that some of the software services of a software service category act as 
complements to the most frequently used services. These three findings are expected to 
help understanding the changing positions within a network with a stable network 
structure. 

The remainder of this paper is organized as follows. The next section gives a brief 
summary about the conceptual background on the SaaS innovation system and on the 
network perspectives in innovation research. In section 3, we define our software 
service network, describe the data collected, explain how we choose representative 
software services, and define the network centrality measures. Section 4 exhibits the 
results of the analysis, i.e., the trend analysis of the position of the representative 
software services within the software service network. Section 5 concludes the paper 
with a discussion on the academic and entrepreneurial implications of our research. 

2. Conceptual Background 

2.1. Open Innovation in a Service Network 

As IT technology advanced and new business models emerged that motivate consumers 
to participate in an innovation process (e.g., Web 2.0 service creation), software 
vendors started to offer their software as a service (SaaS). In detail, SaaS is a paradigm, 
which allows users to run software that is installed remotely via the Internet. The SaaS 
paradigm emerged with commercial computing in the 1980s but has been in the 
downturn with the rise of personal computers. Now, with the emergence of cloud 
computing in recent years, it moved into the limelight again. SaaS exists in a variety of 
areas ranging from office software (e.g., Google docs) to computing resources (e.g., 
Amazon S3) (Campbell-Kelly, 2009).  
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Figure 1. Example of of a composite service, Backupbox. 

One type of SaaS implementation is based on Web services under the Service 
Oriented Architecture (SOA) concept. SOA defines how users can compose and reuse 
services through open interfaces, called open Application Programming Interface (API). 
For example, Google Maps offers APIs for other services to access it (Papazoglou and 
Georgakopoulos, 2003; Haines and Rothenberger, 2010). A composite service is 
created by adding a unique value to an existing SaaS service or by combining several 
existing SaaS services. This composite service is also called “mashup” (Ogrinz, 2009). 
Figure 1 shows an example of a composite service, which is called Backupbox.  It 
supports users moving their files from one cloud storage to another cloud storage. 
Backupbox accesses the existing cloud storage services (e.g., Amazon S3, Dropbox, 
Google Drive, SugarSync, and Box) through their open APIs. According to the 
definition of our software service network, the Backupbox service links all five 
software services (Figure 1) with each other, resulting in a fully connected graph. 

In this architecture, software vendors achieve innovation by utilizing their service 
users (O’Reilly, 2007). This describes an open innovation environment, in which 
innovation occurs through the free sharing of software services with their users and 
even with their competitors (Chesbrough, 2003). Any stakeholder of the SaaS 
environment can participate in the innovation by simply composing existing services 
with open APIs or by opening up the APIs of its software service. This allows users to 
reuse the data and functions of existing services for service development. This system 
is governed through an indirect network effect. That is, the more users exist to use these 
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services, the more services are developed, benefiting the users building services. The 
more services exist, the higher the utility of the users. To benefit from these network 
effects over a longer time period, the development of services with open APIs is 
advantageous (Shy, 2001). 

2.2. Network Position and Innovation 

Social network analysis reveals the structural properties of innovation systems. 
Therefore, it provides qualitative properties. Classical diffusion theories, however, just 
provide aggregated information on the basis of the technology adoption rate (Bass, 
1969; Peres et al., 2010). In social network research, a variety of measures have been 
developed to analyze the position of nodes in a network including centralities, 
clustering coefficients, and average path length (Freeman, 1979; Watts and Strogatz, 
1998). The position of a node in a network is important, since the position represents 
the role of the node in the society (Scott, 1991). Two popular measures are the node 
degree centrality and the betweenness centrality (Freeman, 1979). The node degree 
centrality measures the number of adjacent nodes, which indicates how deeply a node 
is embedded among its neighbors. The betweenness centrality of a node considers the 
number of shortest paths (geodesics) through the node, compared to all possible 
shortest paths. It is used to determine the extent to which the node interconnects nodes. 
If a node has a high betweenness centrality but low node degree centrality, it can be 
derived that the node might bridge several separated communities within the network 
(Everard and Henry, 2002). 

Empirical research about social networks found that the node degree distribution of 
some real-world social networks shows the scale-free property (Albert et al., 1999; 
Albert and Barabási, 2002; Valverde and Solé, 2007; Wagner and Leydesdorff, 2005). 
The scale-free property means that the frequency of node degree decays by a power 
function. That means, the node distribution is inhomogeneous, or highly skewed, 
compared to the exponential distribution of random networks or the distribution of 
regular networks. The empirical research that found many real world social networks to 
be scale-free has been conducted around the late 1990s. Until this time, research on 
social and technological networks had assumed that these networks are random. The 
empirical research of the late 1990s found that the scale-free structure of a network 
allows any individual to reach any other with a low number of hops (Albert et al., 
1999). In a scale-free network, few nodes connect a majority of nodes while the node 
degree of the majority of nodes is low. The few nodes with high node degree are called 
“hubs”. The majority of nodes are connected in short distance with each other through 
these hubs. 

The scale-free property is also important for the studies of innovation networks. 
The probability that a node obtains information correlates with the number of neighbors 
it has. Moreover, the information flow through a network depends on the network 
structure. For example, information disperses fast through hubs in scale-free networks 
(Kuandykov and Sokolov, 2010). In these networks, hubs have an advantage with 
respect to innovation, as they can gather information through their many neighbors. 
Nodes with a low node degree can efficiently get access to information it needs 
efficiently through few hubs. 



8 

 

Furthermore, a node with a low node degree and high betweenness could also be a 
key to innovation (Burt, 1992; Granovetter, 1973; Grewal et al., 2006). While 
innovation, in general, is a process of recombining fragmented existing knowledge 
(Hargadon, 2002), knowledge advances in the context of a group. A node (e.g., a firm 
or a researcher) of a group creates new knowledge by recombining knowledge of the 
group. If a node bridges its group with another, even though the connection to the other 
group is weak and infrequently used, the node enables innovation. The node can access 
a variety of knowledge of the other group and forward it to its own. This way, new 
ideas can emerge from the whole system and not only from a clustered group 
(Granovetter, 1973; Burt, 1992). 

Prior research on the analysis of innovation networks misses out on dynamic 
aspects of network evolution. Innovation research investigating the effect of network 
position on innovation assumes this stability of network topology in evolving networks. 
Granovetter (1973) and Burt (1992) emphasized the importance of nodes connecting 
separated, distant clusters for innovation under a fixed network structure. Other 
research only focuses on the static properties and statistical relationship between nodes. 
For example, in the empirical network analysis and the evolutionary model introduced 
by Albert et al. (1999), the characteristics of scale-free networks are invariant and the 
network is generated by an invariant preferential attachment rule that determines the 
link between a new node and existing nodes. According to this model, a node locates at 
the central position forever, if it has been chosen as a hub at the early stage. Another 
empirical study found that an evolving network maintains its scale-free topology and 
openness structure (Kim and Altmann, 2013). 

The network position affecting innovation has been investigated with respect to a 
variety of conditions, specifying the relationship between network position and 
innovation performance in detail. For example, the more central a node in a network is, 
the higher the innovation performance of the node is under the condition that the node 
has a good absorptive capacity (Tsai, 2001), that the node is in a central group 
(Sasidharan et al., 2011), and that the knowledge exchanged is simple (Hansen,1999). 
The analyses given in these publications were performed with data that shows a 
snapshot of network structure and innovation performance. These analyses of 
Granovetter (1973), Burt (1992), Tsai (2001), Sasidharan et al. (2011), and Hansen 
(1999) did not consider the time factor in their discussion of the relationship between 
network position and innovation. 

Innovation systems are more dynamic than network studies assumed so far. On the 
one hand, innovation systems at a variety of levels (e.g., a single technology or entire 
industry) show a life cycle behavior from their emergence through maturity to their 
decline. This is explained by models that describe the driving force behind the rise and 
fall of an innovation system. The rise and fall happens due to the dispersion of 
technology (Bass, 1969; Rogers, 2003), the opportunities opened up through a new 
technology and the competition led by the opportunity (Jovanovic and MacDonald, 
1994), and the opportunities of strategic alliances with competitors (Lemmens, 2004). 
On the other hand, especially in case of innovation through collective intelligence, the 
trend of innovation varies as the interest of the crowd shifts (Jin et al., 2011). The 
changing interest of the crowd is often revealed in service networks including Web 
sites, blogs, and forums. The analysis of interest change of the crowd is used to predict 
the innovation trend (Gloor et al., 2009). As a consequence of these two perspectives, 
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the question rises whether the structure of an innovation network remains stable while 
the internal status of a node of the network changes. 

3. Methodology 

3.1. Service Network 

For our analysis, data has been gathered from the web site 
www.programmableweb.com, which lists information about SaaS services. If a SaaS 
service is composed, this software service is called mashup in the terminology of the 
Web site. The web site provides information about the name of the software, the 
openness of the service’s API, the services that are reused by the service, and about the 
launch date of the service. We collected this information for all software service since 
the first composite service was added on September 14th, 2005. The last entry in our 
data set is from September 30th, 2012. 

There are several ways of defining a software service network (Dojchinowski et al., 
2012; Huang et al., 2012; Hwang et al., 2009; Kim and Altmann, 2013; Kim et al., 
2011; Weiss and Gangadharan, 2010). In this research, a software service network is 
defined as a set of nodes, which represent software services that opened up their APIs, 
and a set of links between these nodes (Hwang et al., 2009; Kim and Altmann, 2013; 
Kim et al., 2011). Each node represents a software service. We assume that a link 
appears between a pair of nodes if the two nodes are used together to develop a 
composite service. In other words, the creation of a composite service yields a complete 
graph of those software services that have been used for the development of the 
composite service. For example, because 5 software services with open APIs (i.e., 
Amazon S3, Dropbox, Google Drive, Box, SugarSync) are used to create Backupbox, 
as shown in Figure 1, all of the 5 nodes representing these software services are linked 
with each other in the corresponding software service network. That is, creating 
Backupbox generates 10 links among all the five nodes (i.e., a link between Amazon S3 
and Dropbox, Amazon S3 and Google Drive, Amazon S3 and Box, Amazon S3 and 
SugarSync, Dropbox and Google Drive, Dropbox and Box, Dropbox and SugarSync, 
Google Drive and Box, Google Drive and SugarSync, and between Box and 
SugarSync). The links of the software service network are non-directional and 
weighted. That is, a link does not show the information about the source and the 
destination of a relationship but the usage frequency of the link. For example, assuming 
another composite service is created using Dropbox and Amazon S3 in addition to the 
software service Backupbox, the weight of the link between Dropbox and Amazon S3 
were 2, while the other links still had a link weight of 1. 

3.2. Measures 

While the software service network is a weighted graph, the centrality measures have 
usually been defined for binary graphs (Everard and Henry, 2002; Freeman, 1979). A 
binary graph shows only the information of the existence of a connection between two 
nodes. It cannot express the heterogeneity among links. Therefore, we adapt the 
centralities, as defined for binary graph, to weighted graphs (Opsahl et al., 2010; Kim 
and Altmann, 2011). For this, we introduce the following terminology. Let wij be the 
weight of the link between nodes i and j belonging to network G whose size is g. The 
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weight wij of a link between nodes i and j in a software service network means the 
number of occurrences of joint use of the two software services i and j in the software 
service network. It is an integer. If wij is zero, there is no link between the two nodes. 

The degree centrality k(i) of node i for a binary graph is the number of links of the 

node, i.e., ∑j≠i a(i,j), where a(i,j) = 1, if nodes i and j are connected. If the nodes are not 
connected, a(i,j) = 0. Likewise, the degree centrality of node i in a weighted graph is 
the sum of weights wij of the links that node i has with the other nodes j. The degree 
centrality of a node in a weighted graph is also called the strength of the node (Opsahl 
et al., 2010). The degree centrality is likely to increase as the network size increases 
even in networks with identical density. In order to remove the effect of network size g 
on the degree centrality, the degree centrality in a binary graph is normalized by the 
maximum possible number (g-1) of links that a node can have, i.e. k(i) / (g-1). The 
normalized degree centrality in a binary graph varies between 0 and 1, and goes to 1, if 
each node is connected to all the other nodes, and to 0, if no node is connected. 

As the software service network is a weighted graph, the normalized degree 
centrality of node i, CD'(i), in a weighted graph needs to be defined as:  

CD'(i) =∑ j≠iwij / (g-1)                                                  (1)  

The normalized degree centrality for nodes of a weighted graph comes with the 
disadvantage that it can become larger than 1 if more than one composite services are 
developed from a pair of nodes in our software service network. It can vary to the 
number of composite services referring to the pair of nodes. The shortcoming  is that its 
maximum is unbounded. Nevertheless, for our investigation, the definition of 
normalized degree centrality for nodes of weighted graphs is still good for comparing 
the centrality of the nodes in different networks of different sizes, as normalization still 
diminishes the effect of network size on the degree centralities. 

Since the betweenness centrality is defined on the basis of the shortest paths 
(geodesics), the shortest path length in a weighted graph needs to be re-defined as well. 
The shortest path between two nodes is the path that passes the smallest number of 
links between them. The shortest path length d(i,j) between nodes i and j is the number 
of links of the shortest path between the two nodes. As a pair of nodes is said to be 
more complementary as the weight of their link gets larger in the software service 
network, it is reasonable to assume that the distance between any adjacent nodes i and j 
is inversely proportional to the weight, i.e. 1/wij. Therefore, the shortest path length 
dw(i,j) between two nodes i and j in a weighted graph G is defined as the smallest one 
among the path lengths pij between the two nodes, where pij is the sum of inversed 
weights of the links on the path between nodes i and j (Opsahl et al., 2010): 

dw(i,j) = min {|pij| for all pij where |pij| = 1/wih + ··· + 1/wkj}                 (2) 

As a pair of nodes could be connected with more than one shortest paths according 
to the topology of graph (Freeman, 1979), the number of shortest paths σij

w between 
nodes i and j in a weighted graph G, whose size is g, needs to be considered. σij

w(v) is 
defined as the number of shortest paths between nodes i and j passing through node v. 
Based on this definition, the betweenness centrality of node v in a weighted graph G is 

defined as Σi,j σij
w(v) / σij

w for all nodes i and j of g, equivalent to the betweenness 
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centrality in a binary graph (Freeman, 1979). In order to be able to compare 
betweenness centralities of networks despite their different network sizes, the 
betweenness centrality needs to be normalized by the maximum possible number of 
pairs of any two nodes (except for the node v) in a weighted graph G with size g, which 
is (g-1)·(g-2)/2. Therefore, the normalized betweenness centrality of node i, CB’(i), for 
a weighted graph is defined as: 

CB'(i) = ∑i,j,j≠i σij
w(v) / σij

w / ((g-1)·(g-2) / 2)                              (3) 

The normalized betweenness centralities for a binary graph and for a weighted 
graph vary between 0 and 1. The normalized betweenness centrality of a node goes to 0, 
if no shortest path passes through the node, and to 1, if all the shortest paths pass 
through the node. 

Using the normalized degree centrality and the normalized betweenness centrality, 
we can classify the network position into four categories (Baek, 2013). First, a node 
with both high normalized degree centrality and high normalized betweenness 
centrality is a hub, according to the definition of (Barabási, 2009). Second, a node with 
high normalized betweenness centrality but low normalized degree centrality is a 
bridge, following the definition of Everard and Henry (2002). Third, we call the node 
with high normalized degree centrality but low normalized betweenness centrality a 
core. If a network contains several clusters (i.e., a set of nodes denser connected than 
other nodes (Scott, 1991)), cores locate at the centre of a cluster but do cannot reach 
nodes outside the cluster directly like hubs. Finally, if the normalized degree and 
betweenness centralities of a node are both low, we call the node a periphery. 

4. Analysis Results 

The data set, which was surveyed from www.programmableweb.com, includes 7427 
software services, which have been registered from September 14th, 2005 to September 
30th, 2012. Among these software services, 6780 services are composite services. They 
were created by utilizing 1153 software services that offered their functionalities 
through open APIs. With the surveyed information of software services, we defined a 
service network consisting of 1153 nodes and 23573 links. The service network of our 
study is undirected and weighted, and the weight of a link between a pair of nodes 
represents the number of composed software services on the basis of these two nodes. 

For our analysis, we selected 8 services. Among them, 4 services (i.e., Google 
Maps, Twitter, YouTube, and Flickr) are the most frequently used services (Table 1). 
These are provided by the companies leading the Web service industry. Two of them 
are owned by Google, and the remaining two by Twitter and Yahoo. These software 
services were launched and registered early (i.e., between September 2005 and 
December 2006). The remaining 4 services (i.e., Facebook, Foursquare, LinkedIn, and 
Facebook Graph) together with Twitter are the most frequently used services in the 
social networking service category (Table 1). Two of them belong to Facebook, and the 
remaining two to Foursquare and LinkedIn. Not all of them are new services; LinkedIn 
and Facebook launched in 2003 and 2004. But, they only registered in the software 
service network a few years later. Except for Facebook, which was registered in August 
2006, the other services have only been registered in February 2008, December 2009, 
and January 2010, respectively. The social networking service category was chosen 
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since it is a category that became popular later than the other categories (i.e., mapping 
service category, video service category, photo service category)). The software 
services in this category might show a different trend in their position compared to the 
4 most frequently used software services. 

The remainder of this section shows the results of the network position trend 
analysis of the selected 8 software services. The network position is determined with 
respect to the normalized degree centrality and the normalized betweenness centrality 
for each month. 

Table 1. Description of the selected software services. 

Service Name Provider Service Category Registration 
Date 

Publication Date a) Number of 
Uses 

Google Maps Google Mapping September 2005 February 2005 2263 

Twitter Twitter Social Networking December 2006 July 2006 644 

YouTube Google Video April 2006 February 2005 598 

Flickr Yahoo Photo September 2005 February 2004 590 

Facebook Facebook Social Networking August 2006 February 2004 352 

Foursquare Foursquare Social Networking January 2010 March 2009 82 

LinkedIn LinkedIn Social Networking February 2008 May 2003 46 

Facebook Graph Facebook Social Networking December 2009 May 2007 37 

a) The publication dates of the listed software services were surveyed from http://www.wikipedia.com. 

4.1. Network Position Trends of Most Frequently Used Services 

The normalized degree centrality was measured for each of the four most frequently 
used software services (Google Maps, Twitter, Flickr, and YouTube), in order to 
investigate how deeply each of the selected software services is embedded among its 
neighbouring nodes in the software service network and how the embeddedness 
changes over time. Figure 2 illustrates the trend of the normalized degree centralities 
during the study period and shows that these services stand out compared to the 
average normalized degree centrality of all other services in the software service 
network. 

The normalized degree centralities, CD', of Google Maps, Flickr, and YouTube 
show a similar trend. At the early periods, they increase fast and decline after staying at 
a certain level for some time. In particular, the normalized degree centrality of Google 
Maps roughly increases from 0.65 in September 2005 to 2.37 in December 2007. Then, 
the increase rate is lighter than before. After that, from December 2010 onwards, the 
normalized degree centrality slightly decreases from 2.70 to 2.28 at the end of the study 
period. Likewise, the normalized degree centralities of Flickr and YouTube soar from 
0.10 in September 2005 to 2.01 in December 2007 and from 0.14 in January 2006 to 
1.85 in September 2008, respectively. After a short period of light increase, the 
normalized degree centralities of Flickr and YouTube decline from 2.18 in May 2010 
to 1.68 at the end of study period and from 2.02 in January 2011 to 1.75 at the end of 
study period, respectively. Twitter was introduced later than the other three software 
services. The normalized degree centrality of Twitter remains stable at about 0.30 until 



13 

 

January 2008, and increases fast to 1.75 in May 2011. Then, it stays stable again with a 
slight decrease until the end of study period. 

 

Figure 2. Trends of the normalized degree centrality for the four most frequently 
used software services. 

The trends of normalized degree centralities of the selected software services look 
like an innovation adoption life cycle of technology. Prior research on diffusion of 
technology or on users’ adoption of technology suggests that, after an inactive early 
period, a new technology is adopted exponentially but then slows down, so that the 
cumulated adoption rate of the technology shows an S-like curve (Rogers, 2003). For 
the software service network, it means that a software service reaches the central 
position, if it is frequently reused for composite service development, but loses its 
position (i.e., it is pushed out to the periphery of the network), if it is not reused 
anymore that frequently. From this perspective, Google Maps, Flickr, and YouTube 
have grown to their maturity phase during the study period, and now face their 
saturation period. Twitter is in the maturity phase at the end of study period as it 
emerged late. 

Furthermore, Google Maps, Flickr, and YouTube do not show the early inactive 
periods. This might be related to the fact that the first three services entered the 
network at the beginning of the evolution of service network. These services were 
already known to users. Users already knew how to utilize these services. Therefore, 
these services did not have to wait for being diffused by “imitators” (Bass, 1969). 
However, Twitter shows the early inactive period after it entered the service network. 
Users had to learn the value of Twitter. At that point, Google Maps, Flickr, and 
YouTube have already been the most popular services. 

Next, we calculate the normalized betweenness centralities, CB', to diagnose whether 
the selected software services are bridges for other software services in the software 
service network, and to analyze the trend of the betweenness centrality of the selected 
software services. The analysis results, as described in Figure 3, show that the trend is 
idiosyncratic for each software service. The normalized betweenness centrality of 
Google Maps is considerably higher than those of the other three services for the entire 
study period. Although it shows a slight decrease over time, it remains at about 0.22 in 
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average. The normalized betweenness centrality of Flickr declines steadily after the 
peak in the initial period. In detail, it rises sharply from 0.00 in November 2005 to 0.18 
in June 2006. Then, it declines over time to 0.07 with some fluctuations. The 
normalized betweenness centrality of YouTube increases gradually during the first half 
of the study period and stayed at the same level during the second half. In detail, it 
increased from 0.00 in April 2006 to 0.09 in October 2009, and remained at this level 
after that. The normalized betweenness centrality of Twitter shows another interesting 
trend. It stayed at 0.00 between December 2006 and January 2008, and then jumped 
from 0.01 in February 2008 to 0.03 in July 2008. It jumped again from 0.03 in March 
2009 to 0.08 in June 2009, and gradually increases to 0.12 by the end of study period. 

 
Figure 3. Trends of the normalized betweenness centrality of the four most 

frequently used software services. 

Considering that a node with high betweenness centrality and low degree centrality 
implies that the node bridges multiple separated and distant clusters, while a node with 
high betweenness centrality and high degree centralities plays the role of a hub 
(Everard and Henry, 2002), we can make the following observations. In our software 
service network, Google Maps and Flickr are the hubs in the software service network 
initially. That is, they are linked to a lot of nodes in the network and connect many 
clusters. While Google Maps keeps its level, Flickr’s normalized betweenness 
centrality declines over time. Twitter shows growth in both degree centrality and 
betweenness centrality. Moreover, Twitter becomes an even more important hub than 
Flickr from August 2010 onwards. Flickr loses its hub position and is at the same level 
as YouTube in September 2012. Therefore, we can state that the trend of normalized 
betweenness centralities of the selected software services depicts that the pivot of 
innovation shifts from photos to social networking around August 2012. Twitter, as a 
social networking service, combines software services, which were rarely combined to 
develop composite services before August 2012. Twitter took over role of Flicker. 

It is also notable that the normalized betweenness centrality of YouTube grows 
slowly while its normalized degree centrality is high in the early periods already. This 
means that YouTube is linked with many nodes but does not connect many clusters. 
From a graph-theoretical perspective, such a pattern occurs, if the node is not a hub in 
the global network but a core node in a cluster. 
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The lead of Google Maps and Flickr during the study period is due to the market 
context at the time of the birth of composite software services. Google Maps and Flickr 
have been among the first software services, which promoted third party users to reuse 
the function of their software services through an open Application Programming 
Interface (API). The API of Google Maps was published in May 2005 (Rousch, 2005). 
Flickr provided an open API (though not fully comparable with today’s version) from 
its beginning in 2004. Furthermore, the innovation trend at this time shifted from 
keyword search to geographic search and to picture search (Rouse et al., 2007). On the 
one hand, users demanded images of the site searched. On the other hand, letting users 
produce content has been an inexpensive solution for the service provider. 
Consequently, new services connected to Google Maps to tag site-specific information 
to maps. Flickr has been the source of user-generated content. The rise of Twitter since 
2007 (Figure 2, Figure 3) is also related to the situation in the market. At that time, not 
only social networking services became popular but also mobile communication 
devices provided the platform for users’ social activity and for innovation of new 
services (Basole, 2011). Twitter tabbed into this environment by providing an open API 
to its infrastructure. 

Considering the results of all centrality measures, we can state that Google Maps is 
expected to maintain its structural position for a substantial period of time as it is a hub. 
Innovations will happen through the use of Google Maps together with other major 
services (e.g., Flickr, YouTube, and Twitter). However, it is also expected that not all 
services can keep their position. As the normalized betweenness centrality of Flickr 
indicates, Flickr will be unlikely to keep its role of a major player in the near future. 
Flickr lost its attraction in the software service network. The place that Flickr left is 
likely to be occupied by Twitter, whose normalized degree centrality and betweenness 
centrality grew steadily until the end of the study period. It attracts the creation of new 
composite services. In conclusion, we can state that the innovation leader changes from 
a photo service provider (i.e., Flickr) to a social networking service provider (i.e., 
Twitter). Nevertheless, the change of attraction from Flickr to Twitter in the software 
service network does not mean that Flickr declines in the market, nor that Flicker was 
replaced with Twitter. Our result does not show the rise and decline of services with 
respect to market demand. Our results show a change of innovation trend in the 
software service network. 

4.2. Network Position Trend of Social Networking Services 

The normalized degree centrality and the normalized betweenness centrality were also 
calculated for the five most frequently used software services in the social networking 
services category, i.e., Twitter, Facebook, Foursquare, LinkedIn, and Facebook Graph. 
These social networking services have been chosen, in order to analyze whether the 
centrality position trends of software services are due to the overall trend of a single 
software services category or whether some social networking services provide unique 
capabilities. 

Figure 4 illustrates the trend of the normalized degree centrality, CD', for those five 
software services. In detail, the normalized degree centralities of Twitter, Facebook, 
Foursquare, LinkedIn, and Facebook Graph grow during the study period. In detail, the 
normalized degree centrality for Twitter increases fast from 0.03 in January 2008 to 
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1.75 in May 2011, after staying at about 0.03 for 13 months since its entrance in 
December 2006, and decreases slightly until the end of study period. The normalized 
degree centrality for Facebook shows almost the same pattern as that of Twitter (i.e., a 
gradual increase of the value until it reaches the maturity state at the end of the study 
period). It continuously increases from 0.01 in the entrance period (August 2006) to 
1.24 in October 2011, and then remains stable with a slight decrease. The only 
difference is that Twitter starts to grow with a delay after entering the network while 
Facebook starts immediately. The other three software services in this category 
increase as well (see small box in the upper right corner of Figure 4). We re-draw the 
normalized degree centralities for Foursquare, LinkedIn, and Facebook Graph without 
Twitter and Facebook in order to see the trend clearly. The normalized degree 
centralities of Foursquare and Facebook Graph gradually increase to 0.33 and 0.12 until 
the end of the study period, respectively. The normalized degree centrality for LinkedIn 
increases overall with two jumps from zero to 0.13 in June 2008 and from 0.13 to 0.26 
in January 2009. 

 
Figure 4. Trends of the normalized degree centrality for the five most frequently 

used social networking services. 

The trend of the normalized degree centralities of the five software services in 
social networking category suggests that the innovation adoption life cycle of some 
services is synchronous. Twitter and Facebook emerged in the service network late at 
almost the same time, and are in their maturity phase at the end of study period, from 
the perspective of a three phase innovation adoption life cycle model: ascent, maturity, 
and decline (Rogers, 2003). Their life cycle is different from those of Google Maps, 
Flickr, and YouTube, which already reached saturation at the end of the study period 
after reaching their maturity in the middle of the study period. However, it has to be 
noted that the trends of the centralities might show differences later in their life cycles. 

An interesting result is that Twitter shows a sharp increase in its degree centrality in 
the early periods. This means that Twitter occupied quickly a central position from the 
beginning. We conjecture that this is caused by the huge demand of service developers 
for the innovation provided by Twitter. Twitter filled the space for a certain type of 
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service. Service developers utilized Twitter for developing composite services from the 
beginning of its entrance. 

To determine whether the four software services (Facebook, Foursquare, LinkedIn, 
and Facebook Graph) locate at bridge positions similar to Twitter, we calculate the 
normalized betweenness centralities for the entire study period (Figure 5). The results 
show two distinctive trends of normalized betweenness centralities. On the one hand, 
the normalized betweenness centrality of Twitter and Facebook increase considerably. 
The normalized betweenness centrality for Twitter even shows a jump from 0.03 in 
March 2009 to 0.08 in June 2009. Afterwards, it grows to 0.12 until the end of study 
period. The normalized betweenness centrality for Facebook gradually increases from 
0.00 at its entrance to 0.05 in October 2011, and then stays at about 0.04 with a slight 
decrease until the end of study period. On the other hand, the remaining three software 
services in the social networking service category have insignificant normalized 
betweenness centralities during the study period. The normalized betweenness 
centralities for Foursquare, LinkedIn, and Facebook Graph are all 0.00 except for some 
fluctuation of the value of Foursquare at the end of the study period, which does not 
surpass 0.005 (upper right graph in Figure 5). 

 
Figure 5. Trends of the normalized betweenness centrality for the five most 

frequently used social networking services. 

Similar to the trends of the normalized degree centralities of the five software 
services in the social networking service category, the trends of the normalized 
betweenness centralities, CB', also show similarities, resulting in synchronous 
innovation adoption life cycles. They can be grouped into two distinctive trends. 
Twitter and Facebook’s degree centralities and betweenness centralities grow to the 
peak at the end of the study period (Figures 4 and Figure 5), though being still in their 
ascent phases. For the remaining social networking services, the betweenness 
centralities are negligible. It is also noticeable that the betweenness centrality for 
Twitter soars considerably near April 2009 in Figure 5 while its degree centrality 
gradually increases in the same periods in Figure 4. This means that Twitter connected 
distant clusters of software services in the software service network, and new areas of 
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composite services are created in recombining these clusters, which is common 
innovation process as discussed by Burt (1992) and Hargadon (2002). 

Based on Figure 5, we can state that Twitter and Facebook are bridges for other 
software services, though not as strong as Google Maps. This is supported by the 
results for Twitter shown in Figure 3. Foursquare, LinkedIn, and Facebook Graph, 
however, enable innovation within clusters rather than innovation across clusters. They 
approach to the core of a cluster rather than bridging clusters. 

Looking at all results of section 4, we suggest that the change in the innovation 
trend from photo services to social networking services as indicated in figures 2 and 3 
is not only due to the excellence of Twitter but also depends on the innovation trend 
initiated by the entire social networking service category. The top five social 
networking services show a strong grows in the number of connections (Figure 4). 
Considering Figure 5, we can also conjecture that Foursquare, LinkedIn, and Facebook 
Graph play the role of complementing services to the two leading social networking 
services (i.e., Facebook and Twitter). They have a considerable amount of joint 
connections with Facebook and Twitter. Foursquare, LinkedIn, and Facebook Graph 
co-developed 43, 29, and 20 mashups with Facebook or Twitter among all 92, 47, and 
35 mashups that they were part of, respectively. 

5. Discussion and Conclusion 

Within this paper, we analysed the trend of positions of eight representative software 
services, including Google Maps, Flickr, YouTube, Twitter, and Facebook, in a 
software service network with respect to their normalized degree centralities and 
normalized betweenness centralities. The results of the analysis comprise three aspects: 
First, the eight software services show innovation adoption life cycle behaviours with 
respect to their position within the service network (Figure 2). Software services rise to 
a maximum, remain at this level for some time, and, then, show a slight decline. In 
particular, all software services in the social networking service category approach to a 
central position with respect to their degree centrality during the study period while the 
most frequently used photo service (i.e., Flickr) loses its central position. 

Second, the trend analysis also shows that some software services achieve positions 
that interconnect nodes of the entire network (i.e., they become hubs), and that some 
software services achieve core positions within a cluster of software services (Figure 3 
and Figure 5). Moreover, the analysis of our data set showed that the innovation trend 
changed from a central photo service (i.e., Flickr) to services that belong to the social 
networking services category. In particular, Twitter replaced Flickr as a central service 
within the software service network. 

Third, the innovation change from a photo service to social networking services is 
not just due to a single software service rather due to the emergence of an entire new 
category of services within the software services network (Figure 4). The reason for 
this could be based on the fact that some of the social networking software services act 
as complements to the most frequently used social networking services (i.e., Twitter 
and Facebook). Foursquare, LinkedIn, and Facebook Graph co-developed 47%, 62%, 
and 57% of all mashups with Twitter or Facebook, respectively. 
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Our findings cast important implications for academia and industry. First, academic 
research on innovation (e.g., Grewal et al., 2006; Kim et al., 2011) should also consider 
the dynamic network characteristics, in particular the changing positions of nodes in 
those evolving networks. The static network characteristics that help describing 
innovation performance are not the only factors, if the position of a node in the network 
can change as we demonstrated with our research. For example, if a correlation 
between network position of a software service and its innovation performance is 
conducted, the research may be misguided if the correlation is performed only at one 
point in time. As we showed, the performance and position of software services change 
over time. 

Second, from a managerial perspective, our analysis results show that software 
services also follow a life cycle, coherent with prior research on innovation adoption 
life cycle for technology and on innovation diffusion (Rogers, 2003; Bass, 1969). These 
changes over time have been missed in prior research on networks related to 
information systems. Prior research on network analysis described only the network 
structure and the evolution rule of a network (Hwang et al., 2009; Valverde and Solé, 
2007). Therefore, we suggest applying our trend analysis on the basis of normalized 
degree centralities and normalized betweenness centralities not only to the innovation 
within service networks but also to innovation research in general. 

However, our methodology has limitations due to the database and the analysis 
technique. As some SaaS services (e.g., Google Maps) were published earlier than they 
were registered on www.programmableweb.com, the database does not cover precisely 
the whole lifespan of each service. That is, the lack of precise data in the early lifespan 
of these services may distort our life cycle analysis. In addition to this, our analysis 
does not cover all the software services in a service category. Further studies need to 
analyse the change of an entire service category to support our initial conjecture on the 
change of an innovation trend. Besides, our analysis does not consider substitutive 
relations between services. Currently, links between services are assumed to represent 
their complementary relations only. The emergence of a new service affects the life 
cycle of substitutable services according to diffusion theory (Peres et al., 2010). Our 
current trend analysis, however, does not show any causality between two life cycles of 
substitutable services. 

Overall, our analysis of the trend of positions within service networks opens up the 
possibility for further research. First, to support our finding that the network position is 
dynamic, further analyses of network positions in software service networks are needed. 
For example, the growth rate of degree centralities and betweenness centralities could 
be investigated. Second, studies could investigate whether the innovation performance 
depends more on the dynamic properties of a network than on its static properties. 
Third, in order to generalize our findings, our findings need to be validated with 
statistical tests for all nodes in the software service network. Finally, the integration of 
our method into a decision support tool would help service owners to understand the 
performance of their services 
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