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Abstract: Person-to-person interactions within an organization form a 
network of people. Changes of the structural properties of these networks are 
caused through a variety of dynamic processes among the people. We argue 
in this paper that there is a feedback loop between individual actions and the 
network structure. Therefore, a proper interaction model is needed to explain 
the emerging structural changes among networked individuals. According to 
our proposed interaction model, which is based on a complex adaptive 
system approach, changes in the network properties are consequences of 
four factors: (1) the initial underlying network structures; (2) the process of 
network growth; (3) the adoption of strategic responses to what other 
individuals do in the network; and (4) the network visibility. The 
experimental results show that all of these factors have influence. If the 
process of network growth triggers strategic responses of all direct neighbors, 
we observe a heavy drop in the average shortest path length between the 
individuals. The value of the average shortest path length shrinks to three, 
even independently of the visibility of the global network topology. We 
observe the same trend for the clustering coefficient. Fluctuations in the 
clustering coefficients are not significant, if visibility of the network 
topology is set to a high value. However, in the presence of only small 
number of strategic responses and a high network visibility, a short average 
shortest path length and a high clustering coefficient can be observed. 

Keywords: Co-Author Model, Strategic Behavior, Utility Maximization, 
Network Growth Models, Complex Adaptive System Approach, Agent-
Based Modeling and Simulation. 
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1. Introduction 

Social networks are everywhere. Changes of the structural properties in social networks 
are caused through a variety of dynamic processes among the constituents of such 
networks [13, 16, 17]. The focus of the previous studies on stochastic network 
formation models have been on capturing the main characteristics of real world 
networks. An interesting observation for most of the studies has been that a certain type 
of network follows special network characteristics. This network analyses are 
independent of capturing the causes of the observed features. They only try to map 
network features with basic topological formation models and their inherent 
characteristics (e.g., random network formation model with its short average shortest 
path length but low clustering coefficient [2, 5, 12]). These network formation models 
have been proposed to produce a desired network structure [21].  

The topological formation of different network models presented in literature, such 
as the Erdos-Renyi random graph models, the Watts-Strogatz small-world model, and 
the Barabási-Albert scale-free model, do not consider the interaction between the 
network topology and the strategic choices of the players that are located in the 
network. Currently, those topologies are only explainable by the type of averaged 
behavior of actors, which are mainly random or follow a preferential attachment rule [1, 
4, 16, 17, 18, 27]. The existing strategic network formation models can also generate 
network structures from scratch (e.g., from isolated nodes to dyads and stars) with 
simple payoff functions [7, 8].  

These network formation models fail to model that networked individuals usually 
focus on their own networking outcome. Therefore, it is acceptable to consider humans 
as opportunity seeking actors, who act strategically to maximize their utilities from 
their network connectivity [8]. A proper interaction model is needed, to explain the 
emerging network characteristics.  

Furthermore, due to this situation, it can also be assumed that the network structure 
is permanently changing. By looking further into changes in the structural properties of 
a network, it might be possible to relate them to strategic interactions of individuals [8]. 

A study of the network dynamics among actors of a network requires considering 
additional parameters. For example, it requires an in-depth understanding of the 
economic behaviors of network members and the social system, within which the social 
interactions are performed. The behavior of network members will be the ultimate 
feedback to the network. A study of network dynamics in this manner requires a 
complex adaptive system approach. The clustering coefficient and average shortest path 
length can be considered to be the emerging characteristics of the network. We aim to 
capture these changes of those characteristics, as the agents in the network interact in 
an apparently not random way but according to a proper incentive model.  

Therefore, in this study, we design an interaction model, which describes four 
factors that impact individual interactions. The four factors are: (1) the initial 
underlying network structures; (2) the process of network growth; (3) the adoption of 
strategic responses to what other individuals do in the network; and (4) the network 
visibility. Based on this interaction mode, it is expected that the utility gain of an 
individual can be captured and the emerging structural changes among networked 
individuals can be explained. 
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The main idea behind the proposed interaction model is that people agree to 
communicate with each other and establish links among themselves, knowing that their 
time is limited but obtaining some benefit. In detail, the first and second factors are 
necessary for generating the network. Independent of the method of network growth, 
the growth triggers strategic responses of existing network members. The strategic 
response of individuals is based on their observation of the process of network growth 
and is intended to maximize the payoff. Consequently, the third factor also plays an 
important role in the network characteristics. Limitation in having a perfect visibility of 
the global topology of the network also imposes restrictions on the network members. 
It limits the chance of selecting the best candidate for maximizing the utility.  

Based on these arguments, we formulate the following research question: Based on 
our interaction model, what is the impact of a utility maximization process on the 
emerging network characteristics?  

To answer this research question, we create a network formation model based on 
our proposed interaction model. We consider an initial underlying network structure at 
startup to depict a population of individuals. The network growth part of our interaction 
model captures the fact that new individuals are ready to enter the network and, 
consequently, increase the network size. Whenever the network size increases, existing 
individuals within the network perform strategic behaviors to maximize their payoffs.  

To quantify the effect, we use an agent-based modeling approach. With the help of 
agent-based modeling, we can capture the dynamics among the individuals within the 
network. The individuals are assumed to use the co-author utility function [8]. 

The experimental results illustrate that the four factors of our interaction model 
strongly influence the emerging network characteristics. If the process of network 
growth triggers strategic responses of all direct neighbors, a heavy drop in the average 
shortest path length among the networked individuals can be observed. The value of the 
average shortest path length shrinks to three, regardless of the visibility of the global 
network topology. Similarly, fluctuations in the clustering coefficients are not really 
significant, if the network visibility is set to a value higher than 2. However, in the 
presence of only a small number of strategic responses and high network visibility, we 
are able to observe short average shortest path lengths and high clustering coefficients. 
This result corresponds to definition of small-world networks. 

There have been a few studies in literature, which linked small-world properties 
within a network to system performance [34, 35, 36]. A noteworthy aspect of our study 
is that it examines certain network characteristics from the view point of an actor’s 
perception of self-success within the network. That is to say, if individuals within the 
network care more about their own success, we can expect the emergence of networks, 
which do not follow small-world properties. It is also to be noted that a study on how 
the average shortest path length and the clustering coefficient impact the networking 
outcome has been conducted [37, 38].  

The remainder of this paper is organized as follows. The above-mentioned 
principles and concepts are explained in Section 2. Section 3 briefly explains our model. 
The experimental results, which are presented in Section 4, are the basis for the 
discussion and conclusion in Section 5. 
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2. Theoretical Background 

The background to this paper is related to two branches of literature, namely stochastic 
network growth models and strategic network growth models [38].  

The first branch of literature comprises studies about network topology formations, 
which can be generated with stochastic network growth models. Examples of those 
networks are random networks, scale-free networks, and small-world networks. The 
models are based either on random growth [1, 2, 3] or on preferential attachment 
growth [4, 5, 6].  

The second branch of literature analyzes the strategic interactions of individuals in 
networks. An individual obtains a utility due to its interaction with other individuals in 
the network. The utility is defined through a payoff function and can be used to 
measure the social welfare. An overview to social and economic networks is given by 
Jackson [7, 8, 24]. The decision can also be based on degree centrality [28, 29, 30, 31, 
32] or closeness centrality [23, 25, 26, 27]. The effects of individuals’ interactions in 
networks are discussed in the context of network games [9, 11], public good provision 
[10], bargaining and power in networks [7], and reliability [22]. Among those strategic 
network growth models, there is the co-author model that will be used in this paper. 

3. Proposed Model 

3.1. Concept 

Changes in the utility of individuals in a network are consequences of four factors 
within our interaction model: (1) the initial network structures; (2) the process of 
network growth; (3) the adoption of strategic responses to what other individuals do in 
the network; and (4) the network visibility. The key features of our interaction model 
with respect to the complex adaptive system approach are adaptation and feedback 
loops. This combination of features distinguishes our contribution in this paper with 
previous works in this area.  

To formalize our interaction model, we consider a set of nodes N = {1, 2,... 3} and a 
set of M potential candidates for each node i through whom the utility maximization 
process is possible. A utility maximization process can be considered as a node’s 
strategic response (i.e., a new link establishment that provides the node with the highest 
utility) to link establishment behaviors of other network members. Among those M 
potential candidates, node i prefers the one, which maximize its utility. The pseudo-
code of our interaction model and its detail description are given in Algorithm 1. 

3.2. Strategic Response of Individuals 

For expressing strategic responses of nodes, the network needs to be expressed as a 
graph G = {N; L; Ui}. It specifies the actor set N  = {1,... n}, the link set L, and the 

utility functions Ui: G → Թ		for each actor i ∈ N.   
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A strategic response of actor i is defined as the establishment of link iq as the best 
response to actor j’s strategy with two conditions: 

 Actor q belongs to the distance-k ball of i, denoted by Bk[i], where q്i and 
iq Li(G) 

 Ui (G + iq) > Ui (G) 

If actor j decides to establish a link with a new actor, and actor i perceives it as a 
reduction in his utility, actor i may also establish a link with another actor to recover 
the loss imposed by actor j. Based on the utility function of the co-author model (the 
lowest number of connections gives the highest utility to actor i), we argue that the 
creation of a link with an actor at the distance-K ball of i, which can be considered as 
actors i’s rational behavior to maximize his utility. Distance-K ball of node i covers all 
neighboring nodes of i at a distance K. Therefore, actor i can select any of those 

possible candidates (q ∈		BK[i]), with whom its link establishment maximizes its utility. 
The parameter K points to the bounded rationality and actually relaxes the strong 
assumption of having access to the entire node set of the network during the utility 
maximization process. The creation of an additional link leads to a better outcome for 
actor i and, at the same time, can be considered as a penalty for actor j’s action. 
Contrary to the studies, which are based on structural holes theory or network closure 
[42, 43], we argue that one can maximize the utility by strategically connecting to the 
nodes with a low degree of connectivity. This is due to the availability of more 
resources (e.g., time) of actors with little connectivity and the type of utility function 
that is used in our interaction model.  

1 Given graph G = {N; L; Ui}   // N is the set of n nodes, L is the set of links, and Ui : G → Թ		is the utility 

function for each node i ∈ N 

2 Ask Nodes Update [utility]   // Update utilities of all nodes before network grows using Ui 
3 For counter = 1 To P Do   // Set P to the number of nodes to be created 
4      Create-new-node m 
5      If  Mng = ”Strategic Growth” Then 
6           Ask Node m [Create-link-with node j]   // Where maxj (Um (G + jm)) > Um (G)  
7      If strategic_response=”One” Then   // Only one strategic response for a direct neighbor of node j is  

     triggered 
8           Ask One-of-link-neighbors-of node j [   // Selection of node i from neighbors of node j 
9                Create-link-with node q  BK[i]   // Where q്i and iq Li(G) and maxi (Ui (G + iq)) > Ui (G) 
10           ]  
11      If strategic_response=”All” Then   // A strategic response for all direct neighbors of node j is triggered 
12           Ask Link-neighbors-of node j [   // Selection of all node i from neighbors of node j  
13                Create-link-with node q  BK[i]   // Where q്i and iq Li(G) and maxi (Ui (G + iq)) > Ui (G) 
14           ] 
15      Ask Nodes Update [utility]   // Update utilities based on recent changes to the network structure using  

     Ui 
16 Report Clustering_Coefficient  // Clustering coefficient of the network 
17 Report Average _Shortest _Path _Length // Average shortest path length of the network 
18 End For  

Algorithm 1. Pseudo-code of the network formation model based on the 
proposed interaction model. 
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3.3. Utility Function 

The utility function that is used in our model is the utility function of the co-author 
model [8]. In the co-author model, the utility function is defined to encourage the 
cooperation between two individuals. That means, two not directly connected 
individuals do not receive any payoff. However, as soon as they establish a link with 
each other, the co-author utility function assigns a positive utility to both individuals. If 
another individual joins the network and establishes a link with any of the existing two 
nodes, the receiver of the link gains a credit, while the other one faces a lower utility 
due to the negative externality caused by the co-author utility function. In this paper, 
despite the fact that we are using the utility function of the co-author model, we are 
considering a new scenario, in which individuals are not in competition at the initial 
stage but organize themselves according to a certain network structure (e.g., scale-free 
network structure, small-world network, or random network). The competition starts 
when new members join the network based on strategic growth models. If an actor 
perceives a utility decrease due to a new link establishment of its direct neighbors, the 
actor initiates its own new link establishment to another actor of the network. 

The co-author utility function of each individual is a function of its own 
connectivity degree and its neighbors’ connectivity degree. The utility function of the 
co-author model is presented in Equation 1.  

 

௜ܷ ൌ ෎ ൬	
1

݈௜ሺܩሻ
൅	 	

1
݈௡ሺܩሻ

൅	 	
1

݈௜ሺܩሻ݈௡ሺܩሻ
൰

	

௡	∈	௡௘௜௚ሺ௜ሻ

																						ሺ૚ሻ 

 

The degree of actor i is denoted as li(G). The more direct neighbors of actor i are 
involved in collaborations with other network members ln(G), the lower the obtained 
payoff of actor i is from its collaborations. The term෍ ቀ	

ଵ

௟೔ሺீሻ
ቁ

	

௡	∈	௡௘௜௚ሺ௜ሻ	
				  captures the 

connectivity degree of node i, while the term ෍ ቀ	
ଵ

௟೙ሺீሻ
ቁ

	

௡	∈	௡௘௜௚ሺ௜ሻ	
				captures the connectivity 

degree of all its direct neighbors. The term ෍ ቀ	
ଵ

௟೔ሺீሻ௟೙ሺீሻ
ቁ

	

௡	∈	௡௘௜௚ሺ௜ሻ	
				specifies the joined benefit 

from their connectivity degrees. 

The following example gives an insight on how the utility of a node can be 
calculated in our interaction model. The graph G depicted in Figure 1 is given and it is 
supposed that actor j decided to establish a connection with a newly entered actor m 
during network growth. This imposes a decrease in the utility of actor i from  ହ

ଷ
  to  

ଷ

ଶ
 , 

based on Equation 1. According to the definition of strategic responses, a rational 
choice of actor i is to establish the link im or the link in (or any other possibility 
depicted with dashed links) as a best response to the strategy of actor j. It satisfies both 
conditions and increases the utility of actor i from 

ଷ

ଶ
 to ଵ଻

଼
.  
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3.4 Emerging Network Characteristics 

The emerging network characteristics, which we consider in this paper, are the 
clustering coefficient (CC) and the average shortest path length (AVL). The shortest-
path length is defined as the shortest distance between node pairs in a network [5]. 
Therefore, the average shortest-path length, AVL, is defined according to the 
following equation: 

 

ܮܸܣ ൌ
ଵ

భ
మ
ேሺேିଵሻ

෌ ௜௝ݏ
	

௜ஹ௝
																								 		ሺ૛ሻ 

 

where N is the number of nodes, and sij is the shortest-path length between actor i and 
actor j.  

The clustering coefficient Ci of actor i is given by the ratio of existing links between 
its neighbors to the maximum number of such connections [5]. Thus, the clustering 
coefficient Ci is defined according to the following equation: 

 

௜ܥ ൌ
௜ܧ2

݇௜ሺ݇௜ െ 1ሻ
																																													 ሺ૜ሻ 

 

where Ei is the number of links between the neighbors of actor i, and ki is the degree of 
actor i. Averaging Ci over all nodes of a network yields the clustering coefficient CC of 
a network. It provides a measure of how well the node of the network are locally 
interconnected.  

4. Results 

4.1. Simulation Environment 

We designed an agent-based model in Netlogo [14] to conduct the simulations of the 
proposed network formation model that is based on our interaction model. The 
simulation parameters, which have been used in these simulations, and their 
descriptions are presented in Table 1. 

Figure 1. Link creation of node j with newly entered node m and strategic 
response of neighbor i of node j upon it. 
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Table 1. Simulation parameters and their descriptions. 

Parameter 
Name 

Description Values 

Mng 
Methods of network 

growth 
Strategic growth 

K 
Distance from node i to 

node j 
K ∈ [2-10] 

Bk[j] 
Neighbors of node j at 

distance k 
Subset of N 

nstart Population size at start up 25 

nend 
Total size of the 

Population 
200 

Ui 
Utility of  

node i  

I 
Type of initial network 

structure 

 Scale-free network 
 Small-work network 
 Random network 

To demonstrate the significant difference of the initial network topologies that have 
been used for the simulations, the three initial network structures, are depicted in 
Figure 2. 

 

Figure 2. Three different initial network structures with 25 nodes with 50 links 
at startup (from left to right): scale-free network, small-world network with 

rewiring probability 0.1, and random network. 

 

4.2 Results 

Our simulations comprise two sets of experiments (Figure 3 and Figure 4). Each of 
them contains three different configurations with respect to the initial network structure. 
In particular, these figures show the changes in the characteristics of the network (i.e., 
clustering coefficient and average shortest path length) for the three initial network 
structures and the different network visibility parameter values.  
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The process of network growth continues until the size of the network reached 200 
(N = 200). The x-axes show the simulation periods, while the y-axes show the 
clustering coefficient (Figure 4) and the average shortest path length (Figure 3), 
respectively.  

Figure 3 depicts the average shortest path length (AVL) of the networked 
individuals for the three initial network structures and in the presence of one strategic 
response upon the process of network growth.  

Regardless of the initial network structure, if the network visibility is set to a small 
value (e.g., K = 2) the average shortest path length of the network appears shows only 
large values. The maximum values of AVL in Figure 3A, 3B, and 3C range from 9 to 
13. If k = 2, individuals are only able to search for potential candidates for a link 
establishment that are two hops away from themselves only. It reduces the chance of 
finding better candidates from other parts of the network.  

Another observation from these series of figures is that, if the visibility of the 
individuals is set to higher values (e.g., k = 10), a huge reduction in the average shortest 
path length can be observed. The minimum values of AVL in Figure 3A, 3B, and 3C 
range from 3 to 5. This shows that visibility of the global topology of the network will 
provide individuals a better chance to select the best candidate for their utility 
maximization. Having said that, the smallest AVL value belongs to the network, which 
had a random network as its initial network structure. The resulting network with the 
AVL of three is generated, if K = 10.  

We also simulated scenarios (though not shown as figures), in which the method of 
network growth triggers strategic responses from all direct neighbors. An interesting 
observation is that there is no large gap among the AVL values for different visibility 
parameter K. If the visibility parameter is set to high values, the AVL values go down 
but the differences are not significant. This shows that strategic responses of all direct 
neighbors help the entire population to reach each other in a low number of hops and, 
consequently, reduces the impact of the visibility parameter K. 

Furthermore, the average shortest path length of the network is the highest, if the 
method of network growth is set to strategic growth. That is to say, new individuals, 
who enter the network by maximizing their utilities, search for the best candidate 
among the existing network members to provide them with the highest utility (based on 
the co-author formulation). This indicates that the utility maximization process of the 
individuals lead to a network with a high average path length. Consequently, it make 
the individuals to be far away from each other.  

We repeat the same set of experiments by calculating the emerging clustering 
coefficient (CC) of the network. The results of our experiments are depicted in Figure 4. 
In particular, Figure 4A, 4B, and 4C show the changes in the clustering coefficient of 
the network with respect to the three initial network structures and different visibility 
parameters K. The x-axes show the simulation periods, while the y-axes show the 
clustering coefficient of the network.  

The figures show that, regardless of the initial network structure, if the network 
visibility is set to a small number (e.g., k = 2), the clustering coefficients appear to be 
larger. However, if the visibility of the individuals is set to higher values (e.g., k = 10), 
it leads to a huge drop in the clustering coefficient. This shows that a good visibility of 
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the nodes of the global network topology does not lead to a network with a high 
clustering coefficient. This indicates the fact that lower visibility towards global 
topology of the network leads to emergence of network structures with a high 
clustering coefficient among its members. 

 

5. Discussions and Conclusion 

In this study, we argue that the direction of current research must change from “what 
types of network properties emerges” to “why such network properties emerge”. We 
believe that by looking further and deeper into changes in the structural properties of a 
network, we can also relate them to the strategic interactions of individuals that are 
located in it. In the world of networked individuals, usually the main focus of the focal 
individual is on his or her own networking outcome. Humans are opportunity seeking 

Figure 3. Average shortest path length of the 
networked individuals with respect to three 

different initial network structures and in the 
presence of one strategic response upon the 

process of network growth. The x-axis shows the 
simulation periods, while the y-axis shows the 
networks’ average shortest path length). Plot 

legends show the visibility parameter K. 

Figure 4. Clustering coefficient of the networked 
individuals with respect to three different initial 

network structure and in the presence of one 
strategic response upon the process of network 

growth. The x-axis shows the simulation periods, 
while the y-axis shows networks’ clustering 
coefficients. Plot legends show the visibility 

parameter K. 
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actors, who behave strategically, in order to maximize their utilities within the network. 
Consequently, we can explain why the network structure is permanently changing. 

Looking at the topological formation of networks (e.g. random graph models, 
small-world models, and scale-free models) presented in literature, it seems that the 
interaction between the topology of a network and the strategic choices of the 
individuals has not been considered. Currently those topologies are only explainable by 
the type of average behavior of actors in a network [1, 4]. In this study, we tackled this 
limitation and provide an interaction model to show that the changes of the structural 
properties of networks are caused through a variety of dynamic processes (e.g., the 
method of network growth and strategic responses of individuals). 

The emergence of certain network characteristics is an important issue, especially 
from the view point of obtaining an improved performance out of the connectivity of 
individuals within a network. For example, there have been a few studies in literature, 
which showed how small-world properties within a network can boost performance of 
a system [34, 35, 36]. However, a noteworthy aspect of our study is that it examines 
certain network characteristics from the view point of actors’ perception of self-success 
within the network. That is to say, if individuals within the network care more about 
their own success, we can expect the emergence of networks, which do not follow 
small-world properties. Related to these results, it should also be mentioned that the 
impact of these network properties on the outcome is another interesting aspect to be 
investigated [37, 38]. 

The experimental results show that all introduced factors in our interaction model 
have an influence on the characteristics of a network. If the process of network growth 
triggers strategic responses of all direct neighbors, we observe a heavy drop in average 
shortest path length among the networked individuals. In such a scenario, regardless of 
having a perfect visibility of the global topology of the network, the value of average 
shortest path length reduces to three. Further reductions in the clustering coefficients 
are not really significant, if the network visibility for the individuals is set to a value 
higher than 2. However, in the presence of only a small number of strategic responses 
and a high value of network visibility, a short average shortest path length and a high 
clustering coefficient can be observed.  

The proposed interaction model is suitable for human-to-human communication 
environments, in which the process of network growth is not random and triggers a 
strategic response among the existing network members due to limitations in the 
amount of available resources (e.g., time). That is to say, if making a link establishment 
decision, an individual attempts to get the greatest value possible limitation in resources. 
Therefore, the objective is to maximize the total value derived from the available 
resources. The hypothesis that utility maximization underlies human behavior is a 
widely accepted paradigm among economists [7, 8]. However, it has been criticized by 
sociologists and psychologists [39, 40, 41]. They argue that the assumption of rational 
choice model, namely having perfect information about all alternatives is not realistic. 
With the factor network visibility of our interaction model, we address the issue of 
bounded rationality. With the help of network visibility, some restrictions on having the 
perfect knowledge about the alternatives during the process of utility maximization can 
be applied.  
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However, we should mention that complex networks appear within different social 
interaction contexts and, for sure, the underlying processes, which determine the 
emerging characteristics of the social system, are different and are worthy of  
investigations. In the extension of the current work, we will focus on other strategic 
responses, which not just will make each individual better off but also will increase the 
satisfaction level of those actors located at certain distance (i.e., an advanced form of 
human cooperative behavior). In such a scenario, in addition to checking the self-
assessment of each individual, we can consider happiness of individuals at community 
level. People feel better off if they themselves or their neighbors do well. 
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