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Abstract: In this study, we provide an interaction model based on complex 
adaptive system theory, to explain how different methods of network growth 
and strategic responses of existing network members towards them impact 
the outcome of networked individuals (i.e., utility gain at the individual level 
or a society’s collective utility known as social welfare). The proposed 
interaction model allows us to perform our experiments with dynamic utility 
computation, while individuals act strategically in response to what other 
individuals do in the network. We utilized the formulation of the co-author 
model, as it augments the concept of network structure for modeling 
individuals’ utilities. The experimental results show that different methods 
of a network growth lead to different networking outcome for its members. 
We observed that total networking outcome is the highest (with respect to 
the co-author model), if newly entered individuals establish their links 
strategically to other existing members in a way to maximize their own 
payoffs. We believe that reduction in the total utility due to strategic 
responses within the network is acceptable in exchange of having a 
homogenous utility distribution within the population. Our observations give 
us the idea that, with the help of strategic responses, central network 
members can be prevented from gaining very high utilities compared to 
others. Furthermore, network structures can be prevented, in which the 
utilities of network members are widely dispersed. In such a setting, 
individuals experience no discrimination in utility gain against other people 
in their community. 

Keywords: Co-Author Model; Social Welfare; Strategic Behavior; Utility 
Maximization; Network Growth Models; Complex Adaptive System 
Approach; Agent-based Modeling and Simulation. 
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1. Introduction 

The process of network growth among people within an organization or a society is 
inevitable. That is because people agree to communicate with others and establish links 
among themselves, feeling that the link establishments are beneficial for them. 
However, the process of network growth is not random. In the world of networked 
individuals, each individual tries to reach an efficient outcome out of the alternative 
options that exist.  

A large body of literature has focused on developing mechanisms to produce the 
interesting features of real world networks. Examples include: random network 
formation models for networks with a short average shortest path length but low 
clustering coefficient; small-world network formation models for networks with a short 
average shortest path length but high clustering coefficient; and scale-free network 
formation models for networks with hubs and a power-law degree distribution [2, 5, 12]. 
However, each of those stochastic network formation models with their own particular 
formation mechanisms has been proposed to produce a desired network structure 
independent of the causes of observing such network characteristics [21]. Till now, 
current literature lacks well-designed studies to relate the emerging network 
characteristics with their causes. 

In this paper, we argue that by looking further and deeper into changes in the 
structural properties of a network, we can also relate them to the strategic interactions 
of individuals that are located in the network. The individuals act strategically, in order 
to maximize their utilities obtained from their connectivity patterns in the network [8]. 
As the result, the underlying network structure is constantly changing. 

From our view point, strategic interactions can happen at two intervals, during the 
process of network growth and during link establishment among the existing members. 
In this study, we argue that the process of network growth has the potential to trigger 
strategic responses among existing network members. 

We envision a scenario, in which the process of establishment of potential links 
among existing individuals is not based on a simple random selection of partners or the 
well-known method of FOAF (Friend of a friend link formation) [33]. The interruption 
in the underlying topology of the network as a response to the method of network 
growth by its members may have many reasons and interpretations. We believe that 
management of time and resources of this type is the trigger for many people. In 
response to what others are doing in the network, they can perform their best strategic 
responses, which can sometimes be seen as a utility maximization process. In this 
regard and in order to fill the existing gap in the previous studies, we provide an 
interaction model to show that the changes of the structural properties of networks and 
networking outcome are caused through a variety of dynamic processes such as 
methods of network growth and strategic responses of existing individuals who 
undergo competition to maximize their own payoffs. 

Contrary to strategic network growth models that demonstrate how simple payoff 
functions produce different network structures from scratch (e.g., from isolated nodes 
to dyads and stars) [7, 8], or stochastic network growth models that explain specific 
characteristics of networks with their generative mechanism [1, 4, 16, 17, 18, 27], we 
apply a complex adaptive system approach to formulate the process of network 
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formation. We focus on human-to-human communication in environments, where the 
process of network growth follows different patterns and triggers strategic responses 
among the existing network members. Its consequences are reflected in both the 
network structure and the outcome of the whole population. Therefore, we can state 
that there is a feedback loop between individual actions and the network structure. 

We formulate the following research question based on our above mentioned 
arguments: How strategic networking among individuals impacts the networking 
outcome? Since strategic networking can be seen as utility maximization process by 
network members, this research question can be rewritten as: How utility maximization 
behaviors of individuals within a network impact a society’s collective utility (i.e., 
social welfare)? 

In order to answer our research question, we need a utility function for individuals 
that depends on connectivity patterns of individuals and their contacts. We utilized the 
formulation of the co-author model [7, 8], as it augments the concept of network 
structure for modeling individuals’ utilities. To quantify the effect, we use an agent-
based modeling approach. With the help of agent-based modeling, we can test our 
interaction model and capture the dynamics among the individuals within a network.  

The experimental results show that different methods of network growth lead to 
different networking outcome for its members. Total networking outcome is the highest 
(with respect to the co-author model), if newly entered individuals establish their links 
strategically to other existing members in a way to maximize their own payoffs. The 
second and third rank goes to random strategy and preferential node attachment 
strategy, respectively. Our results also show that utility maximization behaviors of 
existing individuals in the networks, which have been generated in response to different 
growth models, reduce the social welfare of the whole society. We believe that 
reduction in the total utility is acceptable in exchange of having a homogenous utility 
distribution within the population.   

The remainder of this paper is organized as follows. The principles and theoretical 
background on the topic are discussed in section 2 in detail. In section 3, we introduce 
our model. The experimental results and discussion are presented in section 4. Finally 
we present our conclusion in section 5. 

2. Theoretical Background 

Networks of opportunity seeking individuals are more than a simple collection of nodes 
and links. Each individual’s behavior and the group dynamics among the population 
make the network setting more dynamic and complicated. Actors of the network apply 
various strategic processes to achieve their goals. Therefore, there is a need to study 
such complex networks systematically with respect to its actors and their strategic 
interactions as it evolves over time. The terms 'actors' and 'nodes' are used 
interchangeably throughout this paper. There are two branches of literature that are 
related to this topic: stochastic network growth models and strategic network growth 
models.  
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2.1 Stochastic Network Growth Models 

In the first category of literature, we can find mainly different network topologies 
with their own specific degree distribution patterns like random networks, regular 
networks, scale-free networks, and small-world networks. Models for generating 
these networks mainly fall into two categories: random growth and preferential 
attachment growth. Random growth models have widely been studied in the 
literature and existing nodes have a uniform probability of link establishment with a 
newly entered node during the process of the network growth [1, 2, 3]. Preferential 
attachment growth models have applications in many areas of science and 
engineering [4, 5, 6]. In fact, it creates networks with non-trivial topological features, 
which do not exist in other simple networks (e.g., lattice networks). The majority of 
nodes in scale-free networks have a low number of connections while few of them 
have a huge number of connections to others. Stochastic style of link establishment 
is considered to be the structuralism approach, as it focuses on a generalized way 
how individuals are interconnected in a network. Although the structuralism 
approach has the potential to tell us what the interesting features of networks are, the 
extent, to which such varieties of structural properties affect the outcome of 
individuals, has received little attention. 

2.2 Strategic Network Growth Models 

In the second category of literature, frameworks are proposed to analyze the strategic 
interactions of individuals in a network. From this point of view, each individual in a 
system obtains a utility due to its interaction with others in the network. Utility 
describes the level of an individual's performance from interaction with others. The 
utility is defined through a payoff function. For example, the payoff function might 
consider the number of connections or the distance between the source and the 
destination. The utility can also be used to measure the social welfare (i.e., a 
society’s collective utility). We can look at the social welfare as a level of well-being 
of the entire society.  

Jackson presented different strategic network formation models (e.g., co-author 
model), in which choices of individuals have certain impact on the topological features 
of the network [7, 8]. Among the vast majority of literature that tries to identify the 
effects of individuals’ interaction in a network, we can distinguish a few topics: 
network games [9, 11], public good provision [10], and bargaining and power in 
networks [7]. Each of the topics can be represented with different theoretical models. 
Konig et al. [22] presented a network formation model where links are formed on the 
basis of agents’ centrality [28, 29, 30, 31, 32], while the network is exposed to a 
volatile environment, in which connections between agents can be interrupted. 
Addressing how to formally model situations, in which individuals purposefully alter 
the network structure, can also be seen in the work of Buechel [23]. Buechel used 
closeness centrality as the strength of an agent's position in a network of relationships 
[25]. Betweennes centrality also was used in some other studies [26, 27]. Furthermore, 
Konig [24] delivered a comprehensive tutorial that introduces the reader to some basic 
concepts used in a wide range of models of economic networks. 

In the co-author model [8], the utility function is defined in a way to encourage the 
cooperation between two individuals. That means, two isolated individuals do not 
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receive any payoff in case of no cooperation but, as soon as they establish a link with 
each other, the co-author utility function assigns a positive utility to both parties. If 
another individual joins the network and establishes a link with any of the existing 
nodes, the receiver of the link gains a credit, while the other one faces a lower utility 
due to the negative externality caused by the co-author utility function. If this process 
continues, we can conclude which kinds of structures are optimal and can produce the 
highest social welfare.  

In this paper, despite the fact that we are using the utility function of the co-author 
model, we are considering a new scenario, in which individuals are not in competition 
at the initial stage and have organized themselves in a certain network structure (e.g., 
scale-free network structure with 10 nodes and 20 links). The competition starts when 
new members join the network (based on random, preferential and strategic growth 
models). If an actor perceives a utility decrease due to a new link establishment of their 
direct neighbors, the actor initiates its own new link establishment to an actor of the 
network. 

3. Interaction Model 

3.1 Concept 

Within our interaction model, changes in the utility gain of individuals in a network are 
consequences of two factors impacting interactions: (1) strategy of network growth, 
which allows new individuals to enter a network; and (2) strategic responses, which 
occur when neighboring nodes accept new nodes. Key features of our interaction model 
with respect to the complex adaptive system approach are the heterogeneity of agents, 
working with adaptation, and feedback loops. This combination of features 
distinguishes our contribution in this paper with previous works in this area. 

To formalize our interaction model, we consider a set of nodes N = {1, 2,... 3} and a 
set of M potential candidates for each node i through whom the utility maximization 
process is possible. A utility maximization process can be considered as a node’s 
strategic response (i.e., a new link establishment that provides the node the highest 
utility) to link establishment behavior of other network members. Among those M 
potential candidates node i prefers the one, which maximize its utility. Each node 
corresponds to a user, who has the choice in selecting one of the M potential candidates, 
while observing other’s interactions in the network. The pseudo-code of our interaction 
model and its detail description are given in Algorithm 1.  

3.2 Strategic Response of Individuals 

For expressing strategic responses, the graph G = {N; L; Ui} is considered. It specifies 

the actor set N = {1,... n}, a link set L, and a utility function Ui: G → 		for each actor 

i ∈	N.   

A strategic response of actor i is defined as the establishment of link iq as the best 
response to actor j’s strategy with two conditions: 
 Actor q belongs to the distance-k ball of i, denoted by Bk[i], where q i and iq 

Li(G) 
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 Ui (G + iq) > Ui (G) 

 

If actor j decides to establish a link with a new actor and user i perceives that it 
causes a reduction in his utility, he may also try to establish a link with an actor in 
another part of the network to recover the loss imposed by actor j. Based on the utility 
function of the co-author model, we argue that the creation of a link with an actor at the 
distance-k ball at i, which has the lowest number of connections gives the highest 
utility to actor i and can be considered as user i’s rational behavior to maximize his 
utility. Distance-k ball of node i covers all neighboring nodes of i at distance k. 
Therefore, node i can select any of those possible candidates (q ∈		Bk[i]), with whom its 
link establishment maximizes its utility. In our experiments, we select the value of k = d 
(d is the diameter of the network and it means access to the entire node set of the 
network). The creation of such a link leads to a better outcome for actor i and, at the 
same time, can be considered as a penalty for actor j’s action.  

3.3 Utility Function 

The utility function used in our model is the co-author utility function [8] that captures 
the payoff of individuals in terms of their connectivity patterns with others. We select 
the co-author utility function, because the utility of each individual in this model is a 
function of both, its own connectivity degree and its neighbors’ connectivity degree. 

1 Given graph G = {N; L; Ui}   // N is the set of n nodes, L is the set of links, and Ui : G → 		is the utility 

function for ach node i ∈ N 

2 Ask Nodes Update [utility]   // Update utilities of all nodes before network grows using Ui 
3 For counter = 1 To P Do   // Set P to the number of nodes to be created 
4      Create-new-node m 
5      If  Mng = ”Random” Then 
6           Ask Node m [Create-link-with random node j]   // With uniform probability of link establishment 
7      If  Mng = ”Preferential” Then 
8           Ask Node m [Create-link-with random node j]   // With probability of link establishment equal to  

           lj/li  where lj is the degree of node j 
9      If  Mng = ”Strategic Growth” Then 
10           Ask Node m [Create-link-with node j]   // Where maxj (Um (G + jm)) > Um (G)  
11      If strategic_response=”One” Then   // Only one strategic response for a direct neighbor of node j is  

     triggered 
12           Ask One-of-link-neighbors-of node j [   // Selection of node i from neighbors of node j 
13                Create-link-with node q  Bk[i]   // Where q i and iq Li(G) and maxi (Ui (G + iq)) > Ui (G) 
14           ]  
15      If strategic_response=”All” Then   // A strategic response for all direct neighbors of node j is triggered 
16           Ask Link-neighbors-of node j [   // Selection of all node i from neighbors of node j  
17                Create-link-with node q  Bk[i]   // Where q i and iq Li(G) and maxi (Ui (G + iq)) > Ui (G) 
18           ] 
19      Ask Nodes Update [utility]   // Update utilities based on recent changes to the network structure using 

     Ui 
20 End For  
21 Report Min [utility]   // Minimum utility of all nodes 
22 Report Max [utility]   // Maximum utility of all nodes 
23 Report Sum [utility]   // Sum of the utilities of all nodes 

Algorithm 1. Pseudo-code of our interaction 
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The co-author utility function allows expressing that each actor tries to increase its 
utility based on the cognition of the population and the new knowledge obtained 
through the interaction with others. The original payoff function of the co-author model 
is presented in Equation 1. Equation 2 shows a different representation of the payoff 
function, factoring out the common terms. 

	
1

	 	
1

	 	
1

	

	∈	

																						  

1 1
1

	 	
1

	

	∈	 	

																																			  

The degree of actor i is denoted as li(G). The more direct neighbors of actor i are 
involved in collaborations with other network members ln(G), the lower the obtained 
payoff of actor i from its collaborations. The term 	 	  captures the connectivity 
degree of node i, while the term 	

	

	∈	 	
				captures the connectivity degree of all 

its direct neighbors. In this way, utility of node i is proportional to the connectivity 

degree of its own and its direct neighbors. Since the term 	   in Equation 1 is 

repeated n times (n is number of neighbors of node i) their summations equals one and 
it creates the first term of Equation 2. Factoring the common term 	

	

	∈	
	from 

Equation 1 produces the second term of equation 2 as well, 
namely 1 	 	

	

	∈	 	
. The following example gives the reader an insight on 

how the utilities of nodes can be calculated in our interaction model.  

Example: Consider the graph G depicted in Figure 1. Suppose node j decides to 
establish a connection with a newly entered node m during the network growth, a 
process that imposes a decrease in the utility of node i from    to   (calculated based on 
Equation 1 or Equation 2). According to the definition of strategic responses, a rational 
choice for actor i is to establish the link im or in (or any other possibilities depicted 
with dashed links) as a best response to j’s strategy, because it satisfies the conditions 
and increases its utility from  to . It should be noted that another possibility for node i 
is to establish a link iq but with utility maximization objective (second condition of the 
definition), node i prefers to choose the node that provides the highest utility.  

 

 
Figure 1. Link creation of node j with newly entered node m and strategic 

response of neighbor i of node j upon it. 
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3.4 Social Welfare 

The social welfare in our model is based on the utilitarian measure of a society’s 
welfare [15]. It is the sum of all individual utilities and is defined as below: 

																																														  

where W is the society’s welfare (collective utility), Ui is the utility of node i and n is 
the total number of nodes in the network.  

4. Results 

4.1 Simulation Environment 

An agent-based simulation in Netlogo [14] has been developed to perform the 
experiments on synthetic data sets. An advantage of agent-based simulation is that, 
from a computational perspective, it allows having a separate computational thread for 
each agent (node) that is responsible for the information exchange. Another advantage 
is that it allows dynamically changing the computing environment to model the real 
scenario. The simulation parameters and their descriptions are listed in Table 1. 

Table 1. Simulation parameters and their descriptions. 

Parameter 
Name 

Description Values 

Mng 
Methods of network 

growth 
 

 Preferential node attachment 
strategy 

 Random growth strategy 
 Strategic growth strategy 

d 
Diameter of the 

network 
d is dynamic and grows over 

time 

K 
Distance from node i 

to node j 
K = d 

Bk[j] 
Neighbors of node j 

at distance k 
Subset of N 

nstart 
Population size at 

start up 
10 

nend 
Total size of the 
population 

200 

W Social welfare 
 

Ui Utility of node i 
 

 

 

4.2 Results 

Our results capture the changes in the social welfare during the process of the network 
growth and strategic establishment of potential links among existing individuals 
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(Figure 2). The x-axis shows the type of network growth model, while the y-axis shows 
the social welfare of the whole network with respect to three different network growth 
models and in the presence or absence of strategic responses of individuals towards 
network growth strategies.  

In particular, Figure 2 shows how social welfare changes occur with respect to 
different parameter configurations. The process of network growth continued until the 
size of the network reached 200 (nend = 200), as we assume a medium-sized 
organizational network which usually consists of 200 people. However, this is a 
generative network formation model and size of the network can be set to larger values. 
Since the process of network growth and strategic responses has a sequential pattern, it 
can be assumed that is does not affect the obtained results. 

Figure 2 illustrates that different models of network growth lead to different results 
in the social welfare. In detail, the computed social welfare is the highest, if the method 
of network growth strategy is set to strategic growth. That is to say, new individuals 
enter the networks in a way to maximize their utilities. They search for the candidate 
among the existing network members that provides them with the highest utility 
(following the co-author formulation, it is the one that has the lowest degree of 
connectivity). The social welfare for this method ranges from a score of 445 to 500. 
The second rank goes to the random node attachment strategy, in which new 
individuals select their partners randomly. The results range from a score of 407 to 491. 
That means the entrance of new individuals with preferential attachment strategy 
negatively affects social welfare.  

Another observation, depicted in Figure 2, is that social welfare decreases in the 
presence of strategic responses of the individuals. That is to say, utility maximizing 
behaviors of existing individuals in networks, which have been generated in response to 
different growth models, reduce the social welfare of the whole society. It can easily be 
observed that, as long as a small population of individuals adopts such strategic 

Figure 2. Total utility of the whole society with respect to different network 
growth strategies and in the presence of strategic responses of individuals. 
Strategic growth produces the highest social welfare. Adoption of strategic 

responses by all direct neighbors leads to reduced social welfare. 
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responses, we can expect an increase in the social welfare. Although this has been 
recognized as a general trend, the result of our third set of experiments shows an 
interesting phenomenon. If the method of network growth is set to strategic growth and 
all direct neighbors act strategically upon it, the difference between the social welfare is 
the highest (i.e., the observations range from a score of 445 for strategic growth to 407 
for random growth and to 404 for preferential growth). This indicates that strategic 
growth of a network triggers a fewer number of strategic responses. That is to say, 
based on the co-author utility function, connectivity to low degree nodes not just 
provides the focal individual the highest utility but also provokes a lower number of 
strategic responses. This, in in its own turn, positively impacts the overall social 
welfare compared to the random strategy and the preferential node attachment strategy. 
For example, the negative impact of sudden strategic responses of all direct neighbors 
of hubs (i.e., high degree nodes) in preferential attachment grown networks reduces the 
social welfare from 449 to 404.  

Minimum and maximum utility of the whole society with respect to different 
network growth strategies and in the presence of strategic responses of the individuals 
are also calculated. The results show that the highest utility (20.06) can only be 
achieved in the presence of preferential node attachment strategy and in the absence of 
strategic responses of individuals. The lowest value is 1.06. However, a large gap 
between the minimum utility and the maximum utility of an individual is the 
consequence. An interesting observation is related to the case of all direct neighbors 
deciding to perform strategic responses. One consequence of such behavior is that the 
gap between the minimum utility and maximum utility gets smaller. The minimum 
utility is 1.02 and the maximum utility is 2.6. We relate this observation to having a 
denser network as a consequence of link formation between them. In case of 
preferential attachment growth, higher density can be seen as the result of behavior of 
direct neighbors of hubs in the utility maximization process. Since high degree nodes 
have a higher probability of being selected during the network growth, the number of 
direct neighbors of those hubs that respond strategically is larger than those in other 
networks.  

Another interesting observation is that the minimum utility value is larger if the 
method of network growth is set to strategic growth (i.e., the observations range from a 
score of 1.49, 1.58 and 1.75) compared to other network growth strategies.  

Finally, the utility distributions of the whole society with respect to different 
network growth strategies are also investigated in this paper and the results are 
presented in Figure 3, Figure 4 and Figure 5. The results show that, regardless of the 
method of network growth, in the presence of strategic responses of all direct neighbors, 
utilities of the whole population is evenly distributed (Figure 3.C, Figure 4.C and 
Figure 5.C). 

It can easily be observed that, as long as a small population of individuals performs 
their strategic responses, the distribution of the utilities of the whole population 
becomes more homogeneous (Figure 3.B, Figure 4.B, and Figure 5.B). Compared to a 
random growth strategy (Figure 3.A), the utility distribution of the whole society with 
respect to preferential attachment growth strategy follows a power law pattern (Figure 
4.A). Finally, the utility distribution of the whole society with respect to strategic 
growth does not change a lot in the presence of strategic responses (Figure 5.B and 
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Figure 5.C). This observation can be related to the emergence of a network topology, in 
which the utility cannot be improved through strategic responses.  

We also performed sensitivity analysis with respect to four different initial 
underlying network structure among individuals (e.g., a scale-free graph, a bernoulli 
random graph, a regular graph and a small-world graph). However, the difference in the 
summation of the utilities of the individuals were not significant. For this reason we 
picked the graph with scale-free topology (with 10 node and 20 links) as the initial 
underlying network structure and we performed our experiments.  

(A)                                                                (B)                                                                (C) 

(A)                                                                (B)                                                                (C) 

(A)                                                               (B)                                                              (C) 
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5. Conclusion 

The work presented in this paper investigates the interaction among individuals with 
respect to their benefits. For initiators of interactions, benefit is clearly given. However, 
the interaction with an existing network member triggers further dynamics among 
network members. Having such dynamics makes the network bigger over time on the 
one hand. It also creates further cognition in its members about future strategies that 
they should perform to maximize their networking outputs.  

In order to explain the networking outcome out of those dynamics, we provide an 
interaction model based on complex adaptive system theory. It shows that changes of 
the structural properties of networks are caused through a variety of dynamic processes 
(e.g., the method of network growth and the strategic responses of individuals). The 
proposed interaction model is built on the assumption that a utility maximization 
process can be considered as a form of incentive for link establishment among network 
members. There is a feedback loop between individual actions and network structure 
and it affects the societal welfare and the distribution of the utility among the 
individuals. Consequently, we can justify why the underlying network structure is 
constantly changing and, as the result, a certain type of network with specific 
characteristics emerges. Key features of our proposed interaction model with respect to 
the complex adaptive system approach are the heterogeneity of agents, the adaptations 
of agents, and feedback loops.  

What we can conclude from the obtained results is that the introduced factors in our 
interaction model (i.e., methods of network growth and strategic responses towards 
them) impact the networking outcome among individuals. For a utility function like the 
co-author model, in which the utility of an individual is a function of its own and its 
direct neighbor’s connectivity degrees, a strategic growth strategy always produces 
higher social welfare compared to random growth strategy and preferential attachment 
growth strategy. The random growth strategy, which provides the whole population a 
uniform probability of link establishment to new members joining the network, 
produces a higher social welfare compared to the preferential attachment strategy. The 
preferential attachment strategy favors some specific individuals obtaining a high 
utility but, due to the large number of direct neighbors, cause a huge drop in social 
welfare in the utility maximization process. In the presence of strategic responses of all 
direct neighbors of nodes, it leads to the lowest social welfare, the lowest minimum 
utility, and lowest maximum utility among the whole population. Our observations also 
show that the utility distribution is less homogeneous under the preferential attachment 
growth strategy compared to the random growth strategy and the strategic growth 
strategy. Moreover, the utility distribution of the whole society with respect to the 
strategic growth strategy does not change a lot in the presence of strategic responses, 
which is due to the fact that a fewer number of strategic responses within the network 
will be initiated. 

Although, in the absence of strategic responses of existing network members, 
strategic growth produces a better social welfare in comparison to random growth 
strategy, the difference in the social welfare of the other growth strategies is only 2% 
(500 vs. 491). We relate this observation to the nature of the utility function that we 
used in our interaction model. That is to say, new individuals enter the networks in a 
way to maximize their utilities. They search among the existing network members for 
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the one that can provide them with the highest utility. Following the co-author 
formulation, the one providing the highest utility is the one who has the lowest degree 
of connectivity. We should also mention that in the presence of a small number of 
strategic responses of existing network members, the difference in the social welfare 
becomes negligible (460 vs. 461). This shows that strategic responses of individuals 
have a bigger impact on the networking outcome compared to the impact of the 
strategy of network growth. However, in the presence of a large number of strategic 
responses, the strategic growth model produces a better social welfare (i.e., the 
observations range from a score of 445 for strategic growth strategy to 407 for random 
growth strategy with 404 for the preferential attachment growth strategy).  

The most important observation of this study is related to the utility distribution. 
We believe that the reduction in the total utility is acceptable in exchange of having a 
homogenous utility distribution within the population. Our observations give us the 
idea that, if individuals react to actions of individuals in a society, we can avoid utility-
maximizing network members to gain an imbalanced level of utility compared to other 
network members. Furthermore, network structures can be avoided, in which utilities of 
the network members are widely dispersed. In such a setting, individuals experience no 
unfairness in resource allocation in their community. Therefore, we state that strategic 
responses of individuals create a society with increased happiness. 

As an implication of our research, we highlight the fact that network organizers can 
support network formations that are beneficial (i.e., finding a trade-off between high 
social welfare and a homogenous utility distribution) to the entire society by 
considering the connectivity of individuals for the network growth method. In one of 
our previous works [34], we showed that, despite the creation of new knowledge and 
the process of learning at an individual level, organizational structure affects the nature 
of human interactions and the information flow. Therefore, we believe that top 
managers and leaders could apply proper structural changes within the network of 
employees within the organization, in order to achieve a better organizational learning 
outcome and a better mechanism for increasing the knowledge flow. Managers within 
companies with a proper incentive mechanism are able to provide motivations for 
employees to be more open towards collaboration with others. Since, in this study, our 
main goal was to make a connection between emerging network characteristics and a 
performance measure, we did not discuss the type of incentives and other factors (e.g., 
organizational culture), which might influence the level of collaboration between 
individuals within the network. The quality of the relationships and the limitation, 
which might be imposed from the organizational hierarchy to the individuals, are also 
of interest for future studies. 

The proposed interaction model in this paper is suitable for human-to-human 
communication environments, where the process of network growth triggers a strategic 
response among the existing network members due to having limitations in the amount 
of available resources (e.g., time and attention). The hypothesis that utility 
maximization underlies human behavior is a widely accepted paradigm among 
economists [7, 8]. However, it has been criticized by sociologists and psychologists, 
who specialize in studying human behavior. They argue that a simple rational choice 
model based on the utility maximization behavior assumes that the individual has full 
or perfect information about the alternatives. In the extension of this work [35], we will 
extend our interaction model with respect to network visibility and bounded rationality. 
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With the help of network visibility (i.e., parameter k), we can apply some restrictions 
on having the perfect knowledge about the alternatives during the process of utility 
maximization. Therefore, the extension of the current work focuses on smaller values 
of network visibility k to depict scenarios, in which individuals do not have access to 
global connectivity patterns of individuals within a network and, therefore, can apply 
their strategies only to those actors located within a certain distance from them. We are 
also interested in investigating the potential changes in the emerging network 
characteristics in the absence of a perfect visibility of the global topology of the 
network.  
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