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Abstract: Due to the large variety in computing resources and, consequently, 
the large number of different types of service level agreements (SLAs), 
computing resource markets face the problem of a low market liquidity. 
Restricting the number of different resource types to a small set of standardized 
computing resources seems to be the appropriate solution to counteract this 
problem. Standardized computing resources are defined through an SLA 
template. An SLA template defines the structure of an SLA, the service 
attributes, the names of the service attributes, and the service attribute values. 
However, since existing research results have only introduced static SLA 
templates so far, the SLA templates cannot reflect changes in user needs and 
market structures. To address this shortcoming, we present a novel approach of 
adaptive SLA matching. This approach adapts SLA templates based on SLA 
mappings of users. It allows Cloud users to define mappings between a public 
SLA template, which is available in the Cloud market, and their private SLA 
templates, which are used for various in-house business processes of the Cloud 
user. Besides showing how public SLA templates are adapted to the demand of 
Cloud users, we also analyze the costs and benefits of this approach. Costs are 
incurred every time a user has to define a new SLA mapping to a public SLA 
template due to its adaptation. In particular, we investigate how the costs differ 
with respect to the public SLA template adaptation method. The simulation 
results show that the use of heuristics within adaptation methods allows 
balancing the costs and benefits of the SLA mapping approach. 

Keywords: Service Level Agreements, Cloud Architecture, Market Liquidity, 
Cloud Markets, Cost-Utility Modeling, SLA Matching, Goods Standardization. 
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1. Introduction 

It Allocation of Cloud computing resources is based not only on functional requirements 
but also on different non-functional requirements. Non-functional requirements, e.g., 
application execution time, reliability, and availability, are termed as quality of service 
(QoS) requirements and are expressed by means of service level agreements (SLAs). In 
order to facilitate SLA creation and SLA management, SLA templates have been 
introduced. SLA templates represent popular SLA formats. They comprise elements such 
as names of trading parties, names of SLA attributes, measurement metrics, and attribute 
values [1]. 

Despite the existence of SLAs, buyers and sellers of computing resources face the 
problem of varying definitions of computing resources in Cloud computing markets. 
Computing resources are described through different non-standardized attributes, e.g., 
CPU cores, execution time, inbound bandwidth, outbound bandwidth, and processor type 
[4]. Sellers use them to describe their supply of resources. Buyers use them to describe 
their demand for resources. As a consequence, a large variety of different SLAs exists in 
the market. The success of matching offers from sellers and bids from buyers becomes 
very unlikely, i.e., the market liquidity (the likelihood of matching offers and bids) 
becomes very low [1]. 

Approaches that tackle this plethora of SLA attributes include the use of standardized 
SLA templates for a specific consumer base [5] [6], downloadable predefined provider-
specific SLA templates [7], and the use of ontologies [8] [9]. These approaches clearly 
define SLA templates and require users to agree a priori on predefined requirements. These 
SLA templates are static meaning that they do not change nor adapt over time. 

Consequently, the existing approaches for the specification of SLA templates cannot 
easily deal with demand changes. Demand changes of users are caused through different 
factors (e.g., changing market conditions). For example, the emergence of multi-core 
architectures in computing resources required the inclusion of the new attribute “number of 
cores”, which was not present in an SLA template a couple of years ago. The existing 
approaches for the specification of SLA templates involve heavy user-interactions to adapt 
existing SLA templates to demand changes. 

In this paper, we apply adaptive SLA mapping, a new, semi-automatic approach that 
can react to changing market conditions [1]. This approach adapts public SLA templates, 
which are used in the Cloud market, based on SLA mappings. SLA mappings, which have 
been defined by users based on their needs, bridge the differences between existing public 
SLA templates and the private SLA template, i.e., the SLA template of the user. In our 
context private templates do not necessarily imply that they are inaccessible to others, but 
the word “private” is used to differentiate it from the “public” template of the (public) 
registry. So, all consumers’ and providers’ templates are called “private”, whereas the 
registry’s template is called “public”. Since a user cannot easily change the private SLA 
template due to internal or legal organizational requirements, an SLA mapping is a 
convenient workaround. 
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Our adaptive SLA mapping approach can use different adaptation methods. The benefit 
of using an adaptation method is decreased by some cost for the user. Costs are only 
incurred, if a user has to define a new SLA mapping to a public SLA template due to its 
adaptation. Within this paper, we investigate these costs. In particular, we investigate how 
public SLA templates can be adapted to the demand of Cloud users and how the costs and 
benefits differ with respect to the public SLA template adaptation method used. 

After introducing a reference adaption method for our analysis, we compare two 
additional adaptation methods which differ in the heuristics applied. The heuristics have 
been introduced in order to find a balance between the benefit of having a public SLA 
template that is identical to most of the private SLA templates and the cost of creating new 
SLA mappings and new public SLA templates. As the metrics for assessing the quality of 
the adaptation method, we define the overall system net utility of all users. The net utility 
considers the benefit of having the same attribute and attribute name in the public SLA 
template as in the private SLA template, as well as the cost of defining a new SLA 
attribute mapping. 

The benefits of the adaptive SLA mapping approach for market participants are 
threefold. Firstly, traders can keep their private templates, which are required for other 
business processes. Secondly, based on their submitted mappings of private SLA templates 
to public SLA templates, they contribute to the evolution of the market’s public SLA 
templates, reflecting all traders’ needs. Thirdly, if a set of new products is introduced to the 
market, our approach can be applied to find a set of new public SLA templates. All these 
benefits result in satisfied users, who continue to use the market, therefore increasing 
liquidity in the Cloud market. However, these benefits come with some cost for the user. 
Whenever a public SLA template has been adapted, the users of this template have to re-
define their SLA mappings. 

The five contributions of this paper are: (1) the definition of an appropriate use case to 
exemplify the adaptive SLA mapping approach; (2) the definition of three adaptation 
methods for adapting public SLA templates to the needs of users; (3) the investigation of 
conditions under which SLA templates should be adapted; (4) the formalization of 
measures (i.e., utility and cost) to assess SLA adaptations and SLA adaptation methods; 
and (5) the introduction of an emulation approach for the use cases. 

The remainder of the paper is organized as follows: Section 2 describes related work. 
Section 3 introduces the adaptive SLA mapping approach and the cost–benefit model. The 
simulation setup, the three adaptation methods, and the simulation infrastructure are 
described in Section 4. Section 5 presents the simulation results and a discussion. Section 6 
concludes the paper. 

2. Related Work 

For putting our work in context of the state-of-the-art, we briefly describe Cloud resource 
management, Cloud marketplaces, and the existing work on SLA matching 
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2.1. Cloud Resource Management 

There is a large body of work about managing resource provisions, negotiations, and 
federation of Cloud and Grid resources. An example is [21]. They designed agent 
technology to address the federation problems in Grids, i.e., resource selection and policy 
reconciliation. [22] propose a new abstraction layer for managing the life cycle of services. 
It allows automatic service deployment and escalation depending on the service status. 
This abstraction layer can be positioned on top of different Cloud provider infrastructures, 
hence mitigating the potential lock-in problem and allowing the transparent federation of 
Clouds for the execution of services. [23] investigate three novel heuristics for scheduling 
parallel applications on utility Grids, optimizing the trade-off between time and cost 
constraints. 

However, most of the related work on resource management considers resource 
provision from the provider’s point of view and does not consider Cloud computing 
infrastructures in the context of a marketplace. 

2.2. Cloud Market 

Currently, a large number of commercial Cloud providers have entered the utility 
computing market, offering a number of different types of services. These services can be 
grouped into three types: computing infrastructure services, which are pure computing 
resources on a pay-per-use basis [11] [12] [13]; software services, which are computing 
resources in combination with a software solution [6] and [14]; and platform services, 
which allow customers to create their own services in combination with the help of 
supporting services of the platform provider. The first type of services, which is also called 
Infrastructure-as-a-Service (IaaS) consists of a virtual machine, as in the case of Amazon’s 
EC2 service, or in the form of a computing cluster, as done by Tsunamic Technologies. 
The number of different types of virtual machines offered by a provider is low. For 
example, Amazon and EMC introduced only three derivations of their basic resource type 
[5]. Examples for the second type of services, which are called Software-as-a-Service 
(SaaS) are services offered by Google (Google Apps [6]) and Salesforce.com [14]. These 
companies provide access to software on pay-per-use basis. These SaaS solutions can 
hardly be integrated with other solutions, because of their complexity. Examples for the 
third kind of Cloud services, which are called Platform-as-a-Service (PaaS), are Sun N1 
Grid [15], force.com [14], and Microsoft Azure [16]. In this category, the focus lies on 
provisioning essential basic services that are needed by a large number of applications. 
These basic services can be ordered on a pay-per-use basis. Although the goal of the PaaS 
service offerings is a seamless integration with the users’ applications, standardization of 
interfaces is largely absent. Concluding, we can state that, apart from first attempts for the 
IaaS service type, standardization attempts do almost not exist. 

2.3. Service Level Agreement Matching 

The main SLA matching mechanisms are based on OWL, DAML-S, or similar semantic 
technologies. [8] describe a framework for semantic matching of SLAs based on WSDL-S 
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and OWL. [9] present a unified QoS ontology applicable to specific scenarios such as QoS-
based Web services selection, QoS monitoring, and QoS adaptation. [17] present an 
autonomic Grid architecture with mechanisms for dynamically reconfiguring service center 
infrastructures. It is exploited to fulfill varying QoS requirements. Besides those ontology-
based mechanisms, [10] discuss autonomous QoS management, using a proxy-like 
approach for defining QoS parameters that a service has to maintain during its interaction 
with a specific customer. The implementation is based on WS-Agreement, using 
predefined SLA templates. However, they cannot consider changes in user needs, which is 
essential for creating 5successful markets, as shown in our earlier work [1]. Additionally, 
several works on SLA management have been presented in [2]. Besides, regardless of the 
type of approach used, these approaches do not evaluate and explain the benefit and costs 
through the introduction of SLA matching mechanisms. 

3. Adaptive SLA Mapping 

In this section, we present a use case for adaptive SLA mapping. Besides, we discuss the 
SLA life cycle and introduce the utility and cost model for assessing SLA matching 
approaches. 

3.1. Use Case 

 

Figure 1: Use case of SLA mapping. 

Since resources can be exposed as services using typical Cloud deployment 
technologies (i.e., SaaS/PaaS/IaaS), we assume that the service provider of Figure 1 
registers its resources (e.g., infrastructure, software, platforms) to particular databases (step 
1, DBs of public SLA templates, Figure 1). If some differences between its resources (i.e., 
its private SLA templates) and the public templates exist, the provider defines SLA 
mappings, which can transform the private template into the public template and vice versa 
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(step 2, Figure 1). The management of SLA mappings, which is performed with VieSLAF, 
is explained in detail in [3]. 

In step 3 of Figure 1, Cloud users can look up Cloud services that they want to use in 
their workflow. The figure exemplifies a business process 6(i.e., workflow) for medical 
treatments [18]. It includes various interactions with human beings (e.g., the task of getting 
a second opinion on a diagnosis) as well as an interaction with different infrastructure 
services. Some of these tasks (e.g., the reconstruction of 2-dimensional SPECT images to 
3-dimensional SPECT images) can be outsourced to the Cloud [18]. Thereby, we assume 
that the private SLA template (representing the task) cannot be changed, since it is also 
part of some other local business processes and has to comply with different legal 
guidelines for electronic processing of medical data. Therefore, in case the user decides to 
outsource a task and discovers differences between the private SLA template and the 
public SLA template, the user defines an SLA mapping. In general, the SLA mapping 
describes the differences between the two SLA templates (step 4). A typical mapping is the 
mapping of an attribute name to another attribute name (e.g., number of CPUs to cores) or 
the inclusion of a new SLA attribute (e.g., parallel programming models) into the SLA 
template. 

The public SLA templates are stored in searchable repositories using SQL and non-
SQL-based databases (e.g., HadoopDB). The SLA mappings, which have been provided 
by users and providers to the entity managing the public SLA templates, are evaluated after 
certain time periods, in order to adapt the public SLA templates to the needs of the users. 
Then, the adapted public SLA templates replace the existing public SLA templates in the 
repository, constituting our novel approach of adaptive SLA mapping. 

The adaptation method, which adapts the public SLA templates, performs it such that 
the new public SLA templates represent user needs better than the old SLA templates (step 
5). The adaptation of attributes, attribute names, and attribute values can not only replace 
SLA templates but also create new versions and branches of public SLA templates (step 6). 
A new branche of a public SLA template can be created, if specilization needs to be 
captured (e.g., a medical SLA template can be substituted by more specialized templates 
on medical imaging and surgery support). The definition of different versions of a 
particular public SLA template occurs, if different attribute combinations in the templates 
are used. Figure 1 shows n template versions in the bioinformatics domain.  

3.2. Public SLA Template Life Cycle 

To illustrate the life cycle of public SLA templates, we give a short example as shown in 
Figure 2 first. 
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 Figure 2: SLA mapping process. 

Initially, the SLA template registry only holds the initial public SLA template T0. In 
iteration 1, all users define mappings from their private templates to T0. Since the attribute 
names of the public SLA template (A, B, C) and the attribute names of each user differ, all 
users have to create 3 attribute mappings. Based on these mappings, the new version T1 of 
the public template is generated (according to the adaptation method used), containing the 
attribute names A’, B’, C’’. 

Since the public SLA template has changed, users need to change their mappings as 
well (iteration 2). Consequently, user a only needs one attribute mapping, user b needs two 
attribute mappings, and user c does not need to issue any attribute mapping, since the 
public template is completely identical to her private template. This example shows how 
our adaptive SLA mapping approach adapts a public SLA template to the needs of users. 
In addition to this, since adapted public SLA templates represent the need of market 
participants, it is most likely that new requests of users need less attribute mappings, 
reducing the cost for these users. 

The formalized public SLA template life cycle, which consists of five steps, is shown 
in Figure 3.

 

 Figure 3: Formalized public SLA template life cycle. 

An initial template is created in the beginning of the life cycle (step 1, Figure 3). 
Afterward, consumers perform SLA mappings to their private SLA templates (step 2). 
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Based on their needs, inferred from these mappings (step 3), and the predefined adaptation 
method, the public SLA template is adapted (step 4). Assuming that the demand of market 
participants does not change, a final template is generated (step 5). If the demand has 
changed during a fixed time period (i.e., new tasks has to be executed or new users joined 
the marketplace), the process continues with step 2. In practice, the time between two 
iterations could correspond to a time period of one week, e.g., but can be set to any value 
depending on the volatility of the market. During that time new SLA mappings are 
solicited from users (i.e., consumers and providers). 

3.3. Adaptation Methods 

The adaptation methods determine for every attribute name of the public SLA template 
separately, whether the current attribute name should be adapted or not. In this paper, we 
investigate three adaptation methods. The first adaptation method is the maximum method 
(which has been applied in the example shown in Figure 2). The remaining two adaptation 
methods apply heuristics, in order to find a balance between benefit and cost.  

3.3.1. Maximum Method 

Applying this method, the SLA attribute name, which has the highest number of attribute 
name mappings, is selected (maximum candidate). The selected attribute name will 
become the next attribute name of the next public SLA template.  

Example: If we assume that all attribute names have the same count, this method would 
select any of the four possible attribute names randomly. If a public SLA template already 
exists, the method will choose the attribute name that is currently used in the public SLA 
template. 

3.3.2. Threshold Method 

In order to increase the requirements for selecting the maximum candidate, this method 
introduces a threshold value. If an attribute name is used more than this threshold (which 
can be adapted) and has the highest count, then this attribute name will be selected. If more 
than one attribute name is above the threshold and they have the same count, the method 
proceeds as described for the maximum method. If none is above the required threshold, 
then the method sticks to the currently used attribute name. Note, throughout the examples 
in this paper, we fix the threshold to 60%.  

Example: Assuming an example in which none of the attribute names has a mapping 
percentage above 60% and all counts are equal, the threshold method sticks to the attribute 
name that is currently used in the public SLA template. 

3.3.3. Maximum-Percentage-Change Method 

This method is divided into two steps. In the first step, the attribute name is chosen 
according to the maximum method. 
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In the second step, which comprises ߬ iterations, attribute names will be changed, only 
if the percentage difference between the highest count attribute name and the currently 
selected attribute name exceeds a threshold. The threshold ்ߪ  is set to 15% within this 
paper. A low threshold leads to more mappings, whereas a high threshold leads on average 
to fewer mappings. After  ߬  iterations (e.g.,  ߬ ൌ 10 ), the method re-starts with executing 
the first step. This allows slighter changes to take effect. 

Example: Let us suppose the mapping count resulted in attribute name A′ having the 
highest count. By applying the maximum method, A′ is selected. In the next iteration, the 
number of mappings for each attribute name has changed. Attribute name A accounted for 
10%, A′ for 28%, A″ for 32%, and A for 30% of all mappings. Assuming a threshold of 
15%, the chosen attribute does not change. The percentage difference between attribute 
name A′ and the attribute name A″ with the highest count is only 32/28−1.0=14.3%.  

3.2. Utility and Cost Model 

To Since the aim of this paper is to assess the benefit and the cost of using the adaptive 
SLA mapping approach for finding the optimal standardized goods in a Cloud market, we 
define a utility and cost model. At its core, the model defines the utility function and the 
cost function. The utility function and the cost function, which take attributes of the private 
SLA template of the customer and the attributes of the public SLA template as input 
variables, help to quantify the benefit and the cost. 

The model assumes an increase in benefit, if an attribute (or attribute name or attribute 
value) of both templates is identical. This is motivated by the fact that the Cloud resource 
traded is identical to the need of the buyer (or, in the other case, the provisioned resource 
of the provider) and, therefore, no inefficiency through resource over-provisioning occurs. 
The model also captures the effort (i.e., cost) of changing an SLA mapping. The cost is 
only incurred, if the user needs to change its SLA mapping because of a change in the 
public SLA template. 

To formally introduce these functions, we introduce some definitions. The set of SLA 
attributes is defined as ௩ܶ௔௥ . As an example, we set ௩ܶ௔௥ ൌ ሼߙ, ሽߚ , where ߙ  represents 
Number of Cores in one CPU and ߚ represents Amount of CPU Time (Note, α and ߚ could 
also represent attribute values). All possible attribute names that a user can map to a 
π ∈ T୴ୟ୰  are denoted as ( )Var  . Within our example, we set ( ) { , , , }Var A A A A    , 
representing Var(“Number of cores in one CPU”) = {CPU Cores, Cores of CPU, Number 
of CPU Cores, Cores}, and ( ) { , , , }'''Var B B B B   . 

Assuming a set of private SLA templates 1 2{ , , , }nC c c c   of customers, we can now 

define the relationship of a specific SLA attribute to a specific attribute name of this SLA 
attribute at a specific point in time (i.e., iteration) ݅ ∈ ܰfor a SLA template p, { }p C T   

(i.e., private or public SLA template) as 
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, : ( ).
var

p i var
T

SLA T Var





        (1) 

With respect to our example, we assume ,0 ( )TSLA A   and ,0 ( )TSLA B   as our 
initial public template T at time 0 (i.e., iteration 0). 

Based on these definitions and the utility function exemplified in [20], we define the 
utility function ,c iu and the cost function ,c iu  for consumer c, attribute  ߨ ∈ ௩ܶ௔௥  , and 
iteration ݅ ൒ 1 as 

௖,௜ݑ
ା ሺߨሻ ൌ ሼ

ܹା, ሻߨ௖,௜ሺܣܮܵ ൌ ሻߨ௜ሺ,்ܣܮܵ
0, ሻߨ௖,௜ሺܣܮܵ ് ሻߨ௜ሺ,்ܣܮܵ

     (2) 

 

௖,௜ݑ
ି ሺߨሻ ൌ

ە
ۖ
۔

ۖ
ۓ
0, ሻߨ௖,௜ሺܣܮܵ ൌ 					ሻߨ௜ሺ,்ܣܮܵ
0, ሻߨ௖,௜ሺܣܮܵ ് ሻߨ௜ሺ,்ܣܮܵ ∧		

ሻߨ௜ିଵሺ,்ܣܮܵ ൌ 	ሻߨ௜ሺ,்ܣܮܵ
ܹି, ሻߨ௖,௜ሺܣܮܵ ് ሻߨ௜ሺ,்ܣܮܵ ∧		

ሻߨ௜ିଵሺ,்ܣܮܵ ് ሻߨ௜ሺ,்ܣܮܵ

      (3) 

The utility function states that a consumer c receives a utility of 1, if the name of the 
attribute of the private SLA template matches the name of the public SLA template 
attribute, and a utility of 0 otherwise. 

The cost function states that a consumer has a cost of 1/2, if the attribute names do not 
match and the public template attribute of the previous iteration has been adapted to a new 
one. In this case, the consumer has to define a new attribute mapping, as he cannot use the 
old one anymore. In the other two cases, the consumer has no cost, since either the 
attribute names match or the public template attribute name did not change since the 
previous iteration. That means he does not need any new mapping. Thus, for attribute ߨ, 
the consumer c at iteration i gets the net utility 

௖,௜,గݑ
௢ ൌ ௖,௜ݑ

ା ሺߨሻ െ ௖,௜ݑ
ି ሺߨሻ.     (4) 

The net utility for all attributes at iteration i for consumer c is defined as the sum of the 
net utilities ݑ௖,ூ,గ

௢ : 

, , , .
var

o o
c i c i

T

u u 


         (5) 

In addition to this, the overall utility and overall cost (i.e., the utility and cost of all 
users C and attributes ߨ at iteration i) are defined as: 

, ( )
var

i c i
c C T

U u


 

 

        (6) 
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, ( )
var

i
c C T

c iU u



 

         (7) 

Consequently, the overall net utility at iteration i is defined as the difference between 
the overall utilities minus the overall cost or as the sum of the net utility of all consumers c 
for all attributes at iteration i: 

, .o o
i i i c i

c C

U U U u 



         (8) 

4. Simulation Environment 

In order to analyze the performance of the three adaptation methods with respect to the 
balance between adapting the public SLA template to the current needs of all users and the 
cost of making new SLA mappings, we set up a simulation environment. 

4.1. Testbed 

For our simulation, we use a testbed that is composed of production-level software 
(VieSLAF) and software that simulates SLA mappings of users. Figure 4 illustrates our 
emulation testbed. The components that are drawn in white belong to VieSLAF. It 
comprises the knowledge base, the middleware for managing SLA mappings provided by 
consumers and providers, and the adaptation methods. The grey components indicate the 
components that simulate SLA mappings of users. A sample provider and a sample 
consumer are shown in the lower part of Figure 4. 

The SLA mapping middleware, which follows a client-server design, facilitates the 
access by the provider and the consumer to registries. It provides to users a GUI for 
browsing public SLA templates. The SLA mapping middleware is based on different 
Windows Communication Foundation (WCF) services, of which only a few are mentioned 
in the following paragraph. 

The RegistryAdministrationService provides methods for the manipulation of the 
database. This service requires administrator rights. An example for these methods is the 
creation of template domains. Another service of the SLA mapping middleware is the 
SLAMappingService, which is used for the management of SLA mappings by service 
consumers and service providers (cf. (3) of Figure 4). Providers and consumers may also 
search for appropriate public SLA templates through SLAQueryingService and define 
appropriate SLA mappings by using the method createAttributeMapping. With each 
service request, it is also checked whether the user has also specified any new SLA 
mappings. The SLA mappings (i.e., transformation rules) are stored in the private database 
of the user and can be re-used by the user for her next SLA mapping. 
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Figure 4: Adaptive SLA mapping architecture using VieSLAF. 

The knowledge base for storing the SLA templates in a predefined data model ((4) of 
Figure 4) is implemented as registries representing searchable repositories. Currently, we 
have implemented anMS-SQL 2008 database with a Web service frontend. To handle 
scalability issues, we intend to utilize non-SQL DBs (e.g., HadoopDB) with SQL-like 
frontends (e.g., Hive [25]). SLA templates are stored in a canonical form, enabling the 
comparison of the XML-based SLA templates. The registry methods are also implemented 
as WCF services and can be accessed only with appropriate access rights. The access rights 
distinguish three access roles: consumer, provider and registry administrator. The registry 
administrator may create new SLA templates. A service consumer and a service provider 
may search for SLA templates and can submit their SLA mappings.  

Based on the submitted SLA mappings, public SLA templates are adapted by the 
registry administrator, using one of the adaptation methods ((5) of Figure 4), introduced in 
section 3.3. 

4.2. Simulation Parameter Settings 

For our simulation, we define five scenarios on how often attribute names occur in private 
SLA templaes on average. In particular, each scenario defines an occurrence distribution of 
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four different SLA attribute names. The five scenarios, which have been chosen such that 
they represent different situations, are defined as follows: 

 Scenario a: All attribute name counts of an attribute are equal. 

 Scenario b: The counts of three attribute names are equally large and larger than 
the remaining one. 

 Scenario c: Two attribute name counts are equally large and are larger than the 
other two, which are equally large as well. 

 Scenario d: One attribute name, which has been picked as the attribute name for 
the initial setting, has a larger count than the counts of the remaining three 
attribute names, which are equally large. 

 Scenario e: One attribute name, which has not been picked as the attribute name 
for the initial setting, has a larger count than the counts of remaining three attribute 
names, which are equally large. 

The actual values of each of the five scenarios are shown in Table 1. The four attribute 
names chosen for this example are: A,A‘,A’‘,A’‘’. The initial setting of attribute α is the 
attribute name A. 

Table 1: Average occurrence of attribute names in all scenarios. 

 Scenarios [%] 

 a b c d e 

A 25 10 10 30.0 23.3 

A‘ 25 30 10 23.3 30.0 

A‘’ 25 30 40 23.3 23.3 

A‘’‘ 25 30 40 23.3 23.3 

 

As an example for the use of the scenarios, we take scenario c. If the attribute α 
(Number of Cores in one CPU) is distributed according to scenario c, then the four 
attribute names occur in average as follows: 10% of the attribute names is A, 10% of the 
attribute names is A‘, 40% of the attribute names is A‘’, and 40% of the attribute names is 
A‘’‘. However, as we intend to account for slight changes in the demand for attribute names 
by users, we draw randomly the attribute names according to the distribution given in 
Table 1 instead of generating the exact number of attribute names. Consequently, the 
actual counts of attribute names might vary compared to the average values shown in Table 
1. As an example, the attribute names generated according to the distribution of scenario c 
might be 9%, 12%, 37%, and 42% instead of 10%, 10%, 40%, and 40%. This process of 
generation of attribute names is executed for each iteration. 
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Furthermore, another three simulation parameters are set. First, we limit the number of 
iterations to 20. At each iteration, 100 users perform SLA mappings to all SLA attributes. 
At the end of an iteration, a new public SLA template is generated, which is based on the 
adaptation method and the SLA mappings of the user. We used these parameter settings for 
each of the three adaptation methods. Table 2 summarizes these settings. 

Table 2: Simulation parameter settings. 

Simulation Parameter Value 

Number of scenarios 5 

Number of users (consumers & providers) 100 

Number of SLA attributes per SLA template 1 

Number of SLA attributes names per attribute 4 

Number of adaptation methods applied 3 

Number of iterations 20 

5. Experimental Results and Analysis 

5.1. Net Utilities of Adaptation Methods 

Using our SLA mapping approach, the user gets benefit of having access to public SLA 
templates that reflect the overall market demand (i.e., the demand of all users). This benefit 
of a user is expressed with equation 2. However, this benefit comes with the cost for 
defining new SLA mappings whenever the public SLA template changed (equation 3) 

Within this section, we investigate the cost for all users (equation 7), the utility of all 
users (equation 6), and the net utility of all users (equation 8) with respect to three 
adaptation methods. The net utility metric is used to decide which of the three adaptation 
methods investigated is superior. 

The first adaption method that we investigate is the maximum method. It is our 
reference method, since it does not use any heuristics. The simulation results, which are 
shown in this section, have been obtained from running the simulation with parameter 
settings as described in section 4.2. The simulation results shown are averages over all five 
scenarios. The advantage of the maximum method is that the public SLA template 
generated with this method minimizes the differences to all private SLA templates of all 
users. This method, however, requires many SLA mappings. 
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Figure 5: Utility, cost, and net utility for the maximum method. 

Figure 5 shows, as expected, that the maximum method generates a high utility, since it 
achieves many matches of attribute names of the public SLA template and the private SLA 
templates. Its net utility stays around its initial net utility value of about 170 for each 
iteration. However, as expected as well, it requires many new mappings and, thus, incurs 
high costs to the users. Consequently, the net utility is far lower than the utility. 

In order to address this issue of high cost of the maximum method, we use heuristics in 
the following two adaptation methods. The heuristics help to find a balance between the 
utility of having a public SLA template, whose attribute names are identical to most of the 
attribute names of the private SLA templates, and the cost of creating new SLA attribute 
mappings. The first heuristics-based adaptation method, which we investigate, is the 
threshold method. The simulation results are shown in Figure 6. 

 

Figure 6: Utility, cost, and net utility, for the threshold method. 
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Figure 6 illustrates that the threshold method does not incur any cost to users at all. 
This is due to the high threshold (i.e., a threshold of 60%), resulting in no changes of the 
public SLA template attribute names. Nevertheless, the utility (and net utility) is not higher 
than ones of the maximum method, just more stable across the 20 iterations. Therefore, the 
threshold method with a threshold of 60% could be considered the opposite strategy to the 
maximum method. That means, the initial public SLA template does not get adapted at all. 
By lowering the threshold parameter such that the threshold parameter for a few iterations 
is lower than the highest count of an attribute name, it is expected that the net utility 
improves. If the threshold parameter is lower than the minimum count of an attribute name 
in all iterations, then this method is identical to the maximum method. 

The maximum-percentage-change method is the second heuristics-based adaptation 
method that we investigate. The results are shown in Figure 7. 

 

Figure 7: Utility, cost, and net utility for the maximum-percentage-change method 
with ૌ ൌ ૚૙  

The simulation results show that in the first iteration and every tenth iteration (τ ൌ 10) 
the overall net utility decreases significantly due to the high amount of new SLA mappings 
needed (Figure 7). At these iterations, the cost of the SLA mappings is very high, since this 
method chooses the attribute names with the maximum number of counts (not considering 
the threshold of 15%). In the subsequent iterations, however, the cost is low and, therefore, 
the overall net utility increases significantly. It achieves even higher values than the other 
two methods. 

5.2. Average Cost and Average Net Utility 

Table 3 shows the average overall utility, average overall cost, and the average overall net 
utility for all three adaptation methods. The averages are calculated over all iterations. The 
maximum method has achieved the highest average overall utility. It satisfies the largest 
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number of users. However, since it also incurs the highest costs, it becomes the method 
with the lowest average overall net utility. 

Table 3: Overall utility, overall costs, and overall net utilities averaged across all 
iterations (The best values are highlighted in bold). 

 Maximum Threshold Max.-Perc.-Change 

Avg. overall utility 171.9 99.5 166.6 

Avg. overall cost 91.3 0.0 39.95 

Avg. overall net utilities 80.6 99.5 126.65 

The threshold method does slightly better with respect to the average net utility than 
the maximum method. This is due to the zero cost. The threshold method (with a high 
threshold) stays with the initial SLA attribute name for the public SLA template. 

The best adaptation method with respect to the average overall net utility is the 
maximum-percentage-change method. We observe that the average overall net utility is 
better than the ones of the other two adaptation methods, although the average overall 
utility is not the highest among the three adaptation methods. The reason is that the cost is 
low. The low cost is a result of the fact that the SLA attribute names of the public SLA 
template are not changed frequently. They are only changed in iterations ݇߬ ൅ 1, ݇ ∈ ଴ܰ 
(i.e., when the method behaves like the maximum method) and whenever the threshold of 
15% is exceeded. 

Based on the result shown in this section, we can state that the adaptive SLA mapping 
approach is a good way of generating standardized goods, which address the needs of the 
market. To reduce the cost for creating SLA mappings frequently, the introduction of 
heuristics into the adaptation methods is helpful. Results show that a significant reduction 
of costs can be achieved while preserving the benefit of adapted public SLA templates. 

5. Conclusion and Outlook 

In this paper, we have investigated cost, utility, and net utility of the adaptive SLA 
mapping approach, in which market participants may define SLA mappings for translating 
their private SLA templates to public SLA templates. Contrary to all other available SLA 
matching approaches, the adaptive SLA mapping approach facilitates continuous 
adaptation of public SLA templates based on market trends. However, the adaptation of 
SLA mappings comes with a cost for users in the form of effort for generating new SLA 
mappings to the adapted public SLA template. To calculate the cost and benefits of the 
SLA mapping approach, we utilized the SLA management framework VieSLAF and 
simulated different market situations. Our findings show that the cost for SLA mappings 
can be reduced by introducing heuristics into the adaptation methods for generating 
adapted public SLA templates. The methods show cost reduction and an increase in 
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average overall net utility. The best-performing adaptation method is the maximum-
percentage-change method. 
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