References [1] Lai, L.S.L., Turban, E.: Groups Formation and Operations in the Web2.0 Environment and Social Networks. Group Decis. Negot. 17, 387—402 (2008). [2] O’Reilly, T.: What is Web2.0: Design Patterns and Business Models for the Next Generation of Software. Commun. Strat. 65, 17—37 (2007). [3] Feiler, J.: How to do Everything with Web2.0 Mashups. McGraw-Hill, New York (2008). [4] Yee, R.: Pro Web2.0 Mashups: Remixing Data and Web Services. Apress, New York (2008). [5] Zammetti, F.W.: Practical Javascript, DOM Scripting, and Ajax Projects. Springer-Verlag, New York (2007). [6] Watts, D.J., Strogatz, S.H.: Collective Dynamics of ‘Small-World’ Networks. Nature 393, 440—442 (1998). [7] Barabasi, A.-L.: Linked: The New Science of Networks. Perseus Pub, Massachusetts (2002). [8] Albert, R., Jeong, H., Barabasi, A.-L.: Diameter of the World-Wide Web. Nature 401, 130—131 (1999). [9] Bjorneborn, L.: ‘Mini small worlds’ of shortest link paths crossing domain boundaries in an academic space. Scientometrics 68, 395—414 (2006). [10] Newman, M.E.J.: Clustering and Preferential Attachment in Growing Networks. Phys. Rev. E. 64, 025102 (2001). [11] Valverde, S., Sole, R.V.: Self-Organization versus Hierarchy in Open Source Social Networks. Phys. Rev. E. 76, 046118 (2007). [12] Wagner, C.S., Leydesdorff, L. Network Structure, Self-Organization, and the Growth of international Collaboration in Science. Res. Policy 34, 1608—1618 (2005). [13] Yang, Y., Yu, X.: Weighted Small World Complex Networks: Smart Sliding Model control. Lect. Notes Comput. Sc. 5755, 935—944 (2009). [14] Kiss, C., Bichler, M.: Identification of Influencers: measuring Influence in Customer Networks. Decis. Support Syst. 46, 233—253 (2008). [15] Kuandykov, L., Sokolov, M.: Impact of social neighborhood on diffusion of innovation S-curve. Decis. Support Syst. 48, 531—535 (2010). [16] Albert, R., Jeong, H., Barabasi, A.-L.: Error and Attack Tolerance of Complex Networks. Nature 406, 378—382 (2000). [17] Fu, F., Liu, L., Wang, L.: Empirical Analysis of Online Social Networks in the Age of Web2.0. Physica A 387, 675—684 (2008). [18] Hwang, J., Altmann, J., Kim, K.: The Structural Evolution of the Web2.0 Service Network. Online Inform. Rev. 33, 1040—1057 (2009). [19] Kim, K., Altmann, J., Hwang, J.: Measuring and Analyzing the Openness of the Web2.0 Service Network for Improving the Innovation Capacity of the Web2.0 System through Collective Intelligence. In: 1st Symposium on Collective Intelligence. Hagen, Germany (2010). [20] Milgram, S.: The Small-World Problem. Psychol. Today 1, 61—67 (1967). [21] Newman, M.E.J.: Power Laws, Pareto Distributions and Zipf’s Law. Contemp. Phys. 46, 323—351 (2005). [22] Barabasi, A.-L., Albert, R.: Emergence of Scaling in Random Networks. Science 286, 509—512 (1999). [23] Park, K. Lai, Y.-C., Ye, N.: Self-Organized Scale-Free Networks. Phys. Rev. E 72, 026131 (2005). [24] Kim, B.J., Trusina, A., Minnhagen, P., Sneppen, K.: Self Organized Scale-Free Networks from Merging and Regeneration. Eur. Phys. J. B 43, 369—372 (2005). [25] Newman, M.E.J.: Scientific Collaboration Networks: II. Shortest Paths, Weighted Networks and Centrality. Phys. Rev. E 64, 016132 (2001). [26] Opsahl, T., Agneessens, F., Skvoretz, J.: Node Centrality in Weighted Networks: Generalizing Degree and Shortest Paths. Soc. Networks 32, 245—251 (2010). [27] Barrat, A., Barthelemy, M. Pastor-Satorras, R., Vespignani, A.: The Architecture of Complex Weighted Networks. P. Natl. Acad. Sci. USA 101, 3747—3752 (2004).